Creating a cloud-free MODIS snow cover product using spatial and temporal interpolation and temperature thresholds

Justinas Kilpys, Egidijus Rimkus, Silvija Pipiraitė

Vilnius University, Institute of Geosciences e-mail: justinas.kilpys@gf.vu.lt

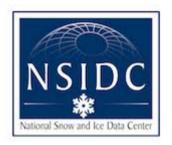
31st Nordic Meteorological Meeting (NMM31) Reykjavík, 18 - 20 June 2018

Motivation and objectives

Motivation:

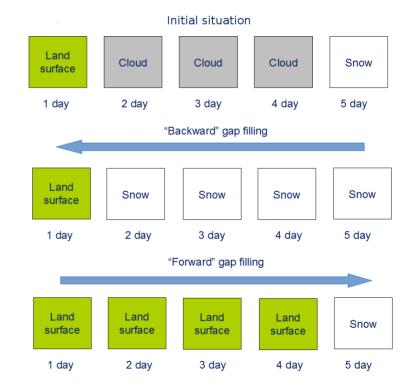
- Ground snow observation network is scarce and can not provide detail information on regional snow cover variations.
- Satellite-based snow products (VIS/NIR) can provide good spatial overview, but application of these products is limited by the cloud cover.
- Daily cloud free snow cover product is desired for hydrological and climatological applications.

Objectives:


- Use spatial and temporal interpolation to create the cloud free MODIS snow cover product.
- Apply temperature thresholds to reduce overestimarion errors of generated product.
- Asses accuracy of the cloud-free MODIS snow cover product using insitu data.

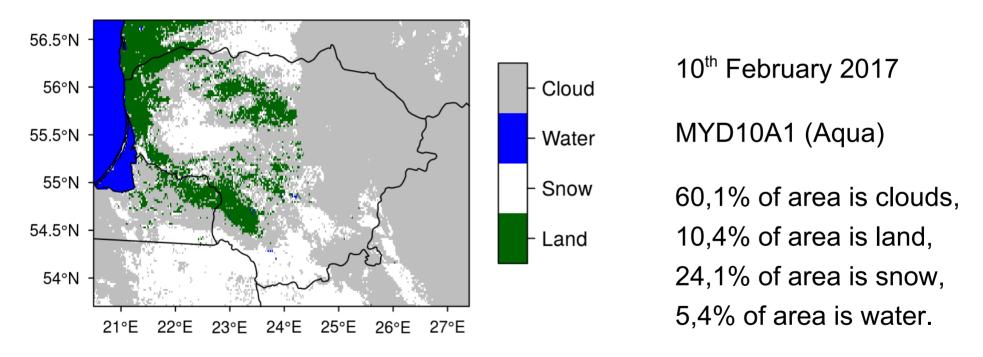
Data

- Study period: 1st October 2012 to 30th April 2017.
- MODIS Terra and Aqua Snow Cover Daily L3 Global 500m Grid, Version 6 (MOD10A1, MYD10A1) (Hall & Rigs, 2018).
- Daily minimum temperature (Tmin), E-OBS 0.25° grided data, v17.0 (provided by ECA&D).
- In situ snow measurements (depth and coverage) from Lithuanian Hydrometeorological Service. Daily observations from 18 meteorological station.



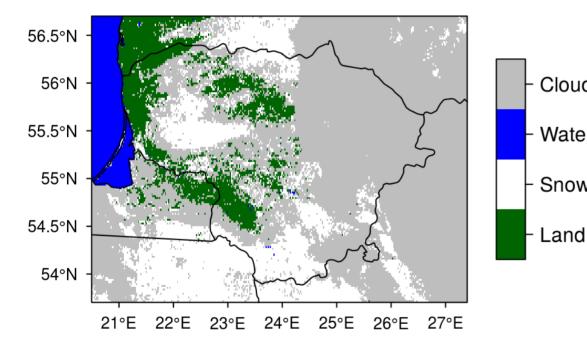
Methodology (1)

- Transformation of MOD10A1 and MYD10A1 products from sinusoidal to geographical WGS-84 projection (MODIS Reprojection Tool).
- Combining Terra and Aqua satellite snow cover products to one.
- Spatial filtering of cloudy values using 8 neighboring grid cells (*Parajka & Blöschl, 2008*).
- Temporal filtering of cloudy grid cells, using forward and backward filling from the last cloud free value (*Foppa & Seiz, 2012*).



- Applying Tmin threshold to filter the false snow grid cells. During accumulation of snow cover (October - February) Tmin < 1.0 °C, during ablation period (March-April) Tmin < 3.0 °C (Dong & Menzel, 2016).
- Calculating mean from the backward and forward temporal filtering with Tmin control.
- Validation with insitu data (contingency table statistics).

Results: cloud gap filling step 1



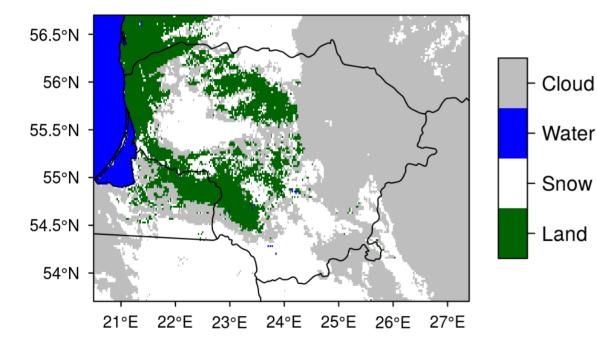
Results: cloud gap filling step 2

Cloud

Water

Snow

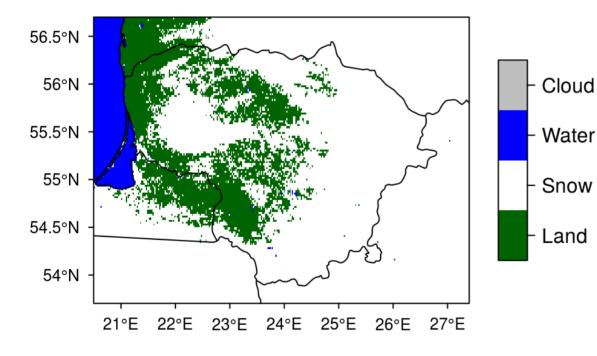
10th February 2017


Combination of MYD10A1 (Terra) and MOD10A1 (Aqua).

60.1% of area is clouds. 10,4% of area is land, 24,1% of area is snow, 5,4% of area is water.

Results: cloud gap filling step 3

10th February 2017


Spatial filtering by 8 neighboring pixels.

49,2% of area is clouds,
13,7% of area is land,
31,7% of area is snow,
5,4% of area is water.

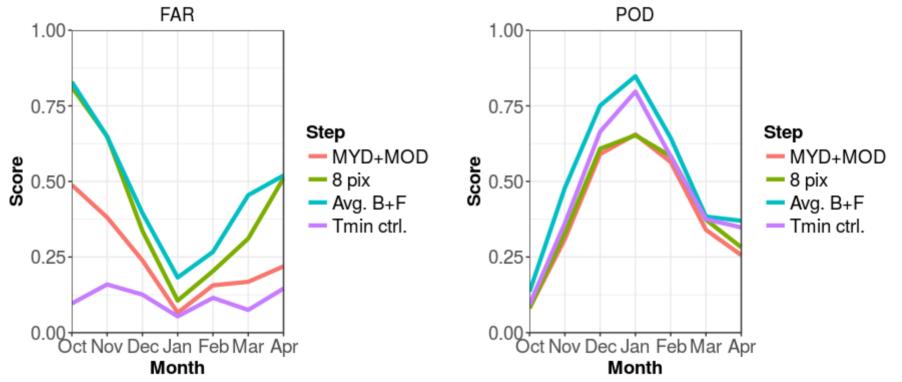
Results: cloud gap filling steps 4-5

10th February 2017

Average of forward and backward temporal gap filling with Tmin control.

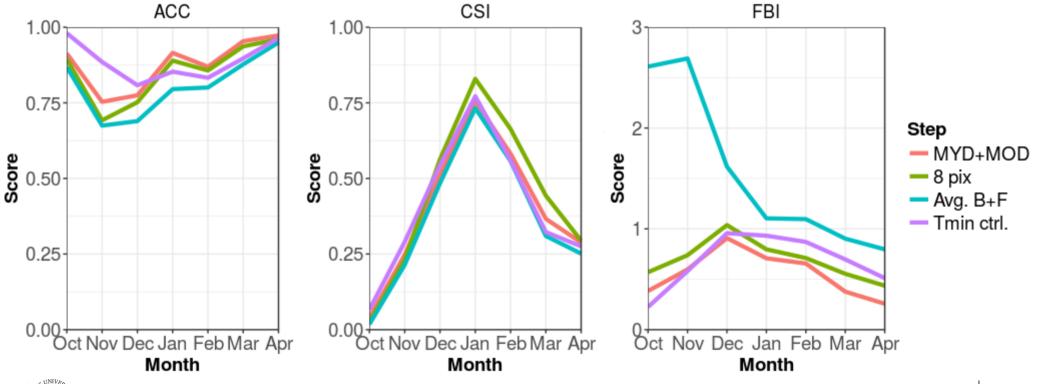
0,0% of area is clouds,17,0% of area is land,77,6% of area is snow,5,4% of area is water.

Validation results


Step	Ν	Hits	Miss	FalseA	CorrN	ACC	CSI	FAR	FBI	POD
MYD+MOD	5459	1345	111	431	3572	0.88	0.44	0.24	0.60	0.45
8рх	6468	1635	128	670	4035	0.86	0.47	0.40	0.72	0.46
Backward	19098	4955	1070	3164	9909	0.78	0.35	0.48	1.49	0.54
Forward	19098	5166	859	2855	10218	0.81	0.39	0.45	1.44	0.58
Avg. B+F	19098	5212	813	2855	10218	0.81	0.39	0.45	1.45	0.58
Tmin ctrl.	19098	4839	1186	932	12141	0.89	0.46	0.11	0.76	0.52

ACC – Accuracy (rate of agreement); CSI – Critical Success Index (Threat Score); FAR – False Alarm Rate. FBI – Frequency Bias;POD – Probability of Detection;

Validation results on different months



31st Nordic Meteorological Meeting (NMM31), Reykjavík, 18 - 20 June 2018

Validation results on different months

31st Nordic Meteorological Meeting (NMM31), Reykjavík, 18 - 20 June 2018

Summary

- In 2012-2017 on average 72 % of original MODIS snow cover products are cloud covered in cold period.
- Spatial filtering by 8 neighboring grid cells reduces the cloud cover on average by 8 %.
- Backward and forward filling can remove all cloudy values, but this method can be used only for re-processing with intention to derive monthly or seasonal snow cover characteristics.
- Temperature thresholds reduce false alarm rate by 4 times. Temperature filter is not universal and should be adapted to the the study area.
- Final cloud-free MODIS snow cover product has accuracy (ACC) of 0.89, probability of detection (POD) 0.52 and Critical Success Index (CSI) 0.46.

Reference

- Dariane, A. B., Khoramian, A. and Santi, E. (2017). Investigating spatiotemporal snow cover variability via cloud-free MODIS snow cover product in Central Alborz Region. Remote Sensing of Environment, (202), pp. 152–165. doi: 10.1016/j.rse.2017.05.042.
- Dong, C. and Menzel, L. (2016). Producing cloud-free MODIS snow cover products with conditional probability interpolation and meteorological data. Remote Sensing of Environment, 186, pp. 439–451. doi: 10.1016/j.rse.2016.09.019.
- Foppa N., and Seiz G. (2012). Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data. The Cryosphere, 6: 331–342.
- Hall, D. K. and G. A. Riggs. 2018. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/A1YY3EHXL51P. [2018-05-03].
- Khoramian, A. and Dariane, A. (2017). Developing a Cloud-Reduced MODIS Surface Reflectance Product for Snow Cover Mapping in Mountainous Regions. Geosciences, 7(2), p. 29. doi: 10.3390/geosciences7020029.
- Li, X., Fu, W., Shen, H., Huang, C. and Zhang, L. (2017). Monitoring snow cover variability (2000–2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. Journal of Hydrology, 551, pp. 314–327. doi: 10.1016/J.JHYDROL.2017.05.049.
- Parajka, J. and Blöschl, G. (2008). Spatio-temporal combination of MODIS images potential for snow cover mapping. Water Resources Research, 44(3). doi: 10.1029/2007WR006204.
- We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).

