Probability forecast: quantifying uncertainty in forecasts

Contents

- The concept of probability
- Probability forecasts
- Uncertainty in forecasts
- Predictability and chaos
- How to verify probabilities
- Calibrating ensemble forecasts

What is probability

- "The probability that it rains tomorrow is 20% "
- Classical interpretation as long run frequencies. Relevant for simple, symmetric, repeatable (and deterministic) events, like a tossing of coin or gambling.
- Probability as a subjective measure of degree of belief, aka the Bayesian interpretation.
- When talking about a single future event, there is no direct frequentistic interpretation. In most cases, we use probability to quantify uncertainty.
- Weather and climate are complicated phenomena. We need the notions of chaos and predictability.
- Mathematically, probability is finite and additive measure, defined for a set of events. No philosophical disputes here.

Probability and statistical theory to quantify uncertainty

- Short history

- Origins in gambling theory. Probabilities for symmetric repeatable events, like throwing a dice (17. century, Fermat, Pascal).

Average when throwing dice

Probabilistic weather forecasts

"There is 20% probability for rain exceeding 10 mm , tomorrow between 8 - 12 AM, at Kumpula, Helsinki."

- The meteorologist best opinion (but he/she might fear feedback for false negatives).
- Of 50 ENS forecast members, 20\% had heavy rain (but ensemble system might not be well calibrated).
- Of 5 different deterministic models, 1 forecasted rain (but they all use the same observations).
- In October, it usually rains 20\% of the days in Helsinki (no skill).

World Cup probabilities

Figure 1: 2018 FIFA World Cup winning probabilities from the bookmaker consensus model. Investment Research, May 2018
And the winner is
simulated likelihood of each team to advance through the tournament (in \%)

	Winner	Runner-Up	Semi- Finalist	Quarter- Finalist	Winner Group Stage	Second Group Stage
Germany	$\mathbf{2 4 . 0}$	$\mathbf{3 6 . 7}$	$\mathbf{5 1 . 3}$	$\mathbf{6 6 . 7}$	$\mathbf{6 8 . 6}$	$\mathbf{2 2 . 0}$
Brazil	$\mathbf{1 9 . 8}$	$\mathbf{3 1 . 9}$	$\mathbf{4 4 . 1}$	$\mathbf{6 0 . 5}$	$\mathbf{6 6 . 8}$	$\mathbf{2 3 . 1}$
Spain	$\mathbf{1 6 . 1}$	$\mathbf{2 8 . 0}$	$\mathbf{5 0 . 5}$	$\mathbf{6 8 . 5}$	$\mathbf{6 0 . 6}$	$\mathbf{2 6 . 5}$
England	8.5	18.7	31.4	66.2	53.7	33.6
France	7.3	16.1	35.1	59.5	60.1	24.6
Belgium	5.3	11.6	23.8	56.9	38.3	43.7
Argentina	4.9	11.3	26.9	51.8	54.7	26.4
Portugal	3.1	8.0	21.8	39.8	25.2	38.2
Uruguay	1.8	5.5	15.8	32.0	42.5	34.3
Switzerland	1.8	5.0	11.5	22.9	19.7	39.6
Mexico	1.8	5.3	10.9	22.5	17.2	36.6
Italy	1.6	4.4	10.1	19.4	15.3	31.0
Russia	1.6	4.6	14.4	30.5	41.4	33.6

How to interpret probability statements

- Probability forecast is tied to the estimated probability distribution of event. The distribution contains information on the likelihood of all possible events.
- The width of the distribution tells about the predictability.
- Easiest to interpret are single event probabilities.
- They need to be tied to time, location, duration and to a threshold.
- We can not combine probabilities without knowledge on dependence and correlation.
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$

OUR FORECAST SAYS THERE'S A 20\% CHANCE OF RAIN FOR EACH OF THE NEXT FIVE HOURS. HOW LIKELY IS IT TO RAIN THIS AFTERNOON? IT'S A SIMPLE QUESTION, BUT I DON'T KNOW THE ANSWER. IS EACH HOUR INDEPENDENT? CORRELATED? OR IS RAIN GUARANTEED AND WERE JUST UNSURE OF THE TIMING?

IT SAYS "SCATTERED SHOWERS." IS THIS THE CHANCE OF RAIN SOMEWHERE IN YOUR AREA? HOW BIG IS YOUR AREA? WHAT IF YOU HAVE TWO LOCATIONS YOU'RE WORRIED ABOUT?

I'VE ASKED MANAGEMENT, BUT THEY'VE STOPPED ANSWERING MY EMAILS, SO-HANG ON, THE SECURITY GUY IS COMING OVER.

TECHICAL DIFFICULTES
WE APOLOGIZE FOR HIRNG A METEOROLOGIST WITH A PURE MATH BACKGFOWV.

WELL BE BACKON

 THE AR SHORTLY.
https://xkcd.com/1985/

IT MIGHT RAIN THIS AFTERNOON. BUT WHAT IS "IT" HERE? ISIT A TRUE DUMMY PRONOUN, AS IN THE PHRASE "IT'S TOO BAD?" OR IS THE WEATHER AN ENTITY? ALSO, WHAT IF I SAY "IT'S HOT OUT AND GETTNG BIGGER?

Going beyond single event probability forecasts

- Two dimensional distribution of precipitation simultaneously at two locations.

Probability distributions of precipitation at Kumpula

- Marginal distribution at location 1: no matter what happens at locations 2.
- Conditional distribution: conditional on some event at 2.
- Dashed line is the conditional distribution at location 1 given that the precipitation at 2 will be $<0.3 \mathrm{~mm} / \mathrm{h}$.
- Multi dimensional probabilities are easy to calculate from model ensembles, but their consistent calibration is a challenge.

Difficulties with probabilities

- Probabilities, especially conditional probabilities, can fool our intuition.
- Thinking, Fast and Slow by Daniel Kahneman:
- People overestimate rare probabilities.
- Adding more information, makes the scenario more plausible in our minds.
- Risk policies are difficult, as we tend to avoid immediate losses.
- Simpson's paradox. Change in the background assumptions, e.g. different climatologies.

Probability of thunderstorm in Helsinki tomorrow at 9 AM while I am cycling to work.

Choose between:
A. sure gain of $\$ 240$
B. 25% chance to gain $\$ 1,000$ and 75% chance to gain nothing

More discussion on probability

- Uncertainty is about the model and our beliefs, not about the Nature.
- Individual probability statements of single future events are measures of subjective belief.
- They can be based on objective facts and must be consistent.
- If $P("$ rain tomorrow" $)=30 \%$ then $P(" n o$ rain tomorrow" $)=70 \%$.
- It is very hard to assign consistent subjective probabilities to complex events.
- Algorithmic, model based forecasts can be verified against observation and tuned to be consistent.

How to make probability forecasts

- Probabilities for an event based on an ensemble of forecasts from NWP models.
- Statistical post-processing of NWP output from a single model run or the output of ensemble-based NWP.
- By analysis of historical weather and climate data to yield statistical relationships between currently observable predictors and the future observations of interest.
- Meteorologist subjective interpretation of NWP forecasts and other information.

Consistent terminology is important

- Confidence and likelihood in the IPCC Fifth Assessment Report.

Likelihood Terminology	Likelihood of the occurrence/ outcome
Virtually certain	$>99 \%$ probability
Extremely likely	$>95 \%$ probability
Very likely	$>90 \%$ probability
Likely	$>66 \%$ probability
More likely than not	$>50 \%$ probability
About as likely as not	33 to 66% probability
Unlikely	$<33 \%$ probability
Very unlikely	$<10 \%$ probability
Extremely unlikely	$<5 \%$ probability
Exceptionally unlikely	$<1 \%$ probability

Confidence Terminology	Degree of confidence in being correct
Very high confidence	At least 9 out of 10 chance
High confidence	About 8 out of 10 chance
Medium confidence	About 5 out of 10 chance
Low confidence	About 2 out of 10 chance
Very low confidence	Less than 1 out of 10 chance

FMI POP terminology

probability of precipitation	change for rain or showers
less than 10%	dry weather
$10-30 \%$	small chance
$30-70 \%$	medium chance
$70-90 \%$	high chance
over 90%	overall change

Deterministic, stochastic, chaotic

- A phenomena is deterministic, if its final state can be predicted form initial conditions.
- A phenomena is stochastic or random if there are several possible final states from the same initial state, but there is systematic statistical behaviour in the distribution of outcomes.
- A phenomena is chaotic, if a small change in initial conditions leads eventually to non predictable state.
- The weather system: stochastic and chaotic.
- Numerical weather model: deterministic and chaotic.

Predictability and chaos

- Numerical models describing weather are chaotic: a small perturbation in the initial conditions accumulates and makes the system eventually non predictable.
- Small change = one bit in computer representation.
- By perturbing model initial values we can evaluate the predictability!

Quality of probability forecasts

- No matter how probability forecasts are made we want them to have good performance in the long run.
- Every time the forecaster says rain with 60% probability, we assume that in 6 out of 10 times it rains.
- So, from one forecast no quality statements are possible.

How to verify probabilities

- When we do repeated probability statements, they can be verified by using actual observations. The forecasted probabilities have to match the observed frequencies (reliability). Several statistics and diagrams are used.

Reliability and ROC diagrams of one year of Probability of Precipitation forecasts. The reliability curve (with open circles) indicates strong over-forecasting bias throughout the probability range.

Reliability diagram

ROC

The ROC curve is constructed on the basis of forecast and observed probabilities leading to different potential decision thresholds. The black dot represents the single value ROC when using 50% treshold $(H=0.7$; $\mathrm{F}=0.17$).

Figures by Pertti Nurmi.

Example: POP at FMI

- POP at FMI by multi model neighbourhood processing.
- Helsinki Kaisaniemi stations, P(prec>0.1 mm/h) 24 h fcst, all of 2017.

Weather forecast Helsinki

Hourly					Five days				囲 Ten days				\|ll Ten days				
$\begin{aligned} & \text { Tue } \\ & 15 \end{aligned}$		21	Wed 00		06	09	15	21	$\begin{aligned} & \text { Thu } \\ & 03 \end{aligned}$	09	15	$\begin{aligned} & \text { Fri } \\ & 03 \end{aligned}$	15	$\begin{gathered} \text { Sat } \\ 03 \end{gathered}$	15	$\begin{aligned} & \text { Sun } \\ & 03 \end{aligned}$	15
-	20° (4)	17° (3)		C	\%	13° (1)	(5)	-	(2)	(3) ${ }^{13^{\circ}}$	-	144° 6 6	(2)	12° (2)	19	12° (1)	n 19° (5)

Probability and amount of precipitation

30\%	< 10%	< 10%	< 10%	< 10%	10\%	< 10\%	10\%	10\%	10\%	< 10\%	10\%	< 10\%	10\%	< 10%	<10\%	<10\%	\%
0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\underset{(1 \mathrm{~h})}{\mathrm{mm}}$	$\underset{(3 \mathrm{~h})}{(\mathrm{mm}}$	$\underset{(3 \mathrm{~h})}{(\mathrm{mm}}$	$\begin{gathered} \text { mm } \\ (3 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & (3 \mathrm{~h}) \end{aligned}$	$\underset{(3 \mathrm{~h})}{\substack{\mathrm{m}}}$	$\underset{(3 \mathrm{~h})}{ }$	$\underset{(6 \mathrm{~h})}{\mathrm{mm}}$		$\underset{(6 \mathrm{~h})}{(\mathrm{mm}}$	$\underset{(6 \mathrm{~h})}{\mathrm{mm}}$	$\underset{(6 \mathrm{~h})}{(\mathrm{mm}}$	$\begin{gathered} \mathrm{mm} \\ (12 \mathrm{~h}) \end{gathered}$					

Reliability diagram

Ensemble forecasts

- Conceptually, the best way to make probability forecasts for complicated events.
- Run the same forecast model with perturbed initial conditions.
- Probability 20% means that 10 out of 50 ensemble members predict the event to happen at the specified location in the defined time window.
- ENS systems have to be tuned to match predictability and account model's inaccuracies.
- To be useful, ensembles have to be calibrated to correct the spread and remove biases.

Example: warm May in Finland

- Probabilities for warm weather for 16.5.2018 12 UTC with 25 h lead time.
- Pink colour in the model maps on left means P(Temp $\left.>25^{\circ} \mathrm{C}\right)>90 \%$
- All the models are too cold, there is bias, and the ensemble spreads are too narrow.
- There is a strong need for post-processing and ensemble calibration.

GFS ENS

Helsinki Kumpula, May 2018 verification, leadtime 24 h

Calibrating ensemble forecasts by past observations

- ECMWF EPS with 51 members.
- Harp tool from the Hirlam group.
- Ensemble MOS with 30 days history.
- EU H2O2O I-REACT project.

ECMWF Ensemble forecasts
Helsinki, Finland $60.23^{\circ} \mathrm{N} 25^{\circ} \mathrm{E}$ (ENS land point) 23 m
High Resolution Forecast and ENS Distribution
Monday 2 October 201700 UTC

Temperature at 850 hPa - Probability for $1^{\circ} \mathrm{C}$ intervals

Score:

- RMSE
- - Spread

Model:

- ECEPS
- ECEPS_calib

Threshold: 25 degC
Model:
Verification period: June 2017

- ECEPS_calib

Conclusion - why probability forecasts

- By quantifying the uncertainties related to forecasts we give more information than by a single deterministic forecast.
- They allow better handling of risks associated with different actions. "We want to be 95% sure that in the next 30 years the water level will rise more than 1 m from the average less that 2 times."
- They allow for better verification measures, i.e. which account for the predictability.
- There are still no perfect systems for probability forecasts, work to be done on EPS tuning and post-processing.

[^0]
[^0]: Several people at FMI contributed this talk, including:
 Leila Hieta, Kaisa Ylinen, Juha Kilpinen, Marja-Liisa Tuomola, Carl Fortelius, Jussi Ylhäisi

