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• ”The	probability	that	it	rains	tomorrow	is	20%”	
• Classical	interpretation	as	long	run	frequencies.	Relevant	for	simple,	
symmetric,	repeatable	(and	deterministic)	events,	like	a	tossing	of	coin	or	
gambling.	

• Probability	as	a	subjective	measure	of	degree	of	belief,	aka	the	Bayesian	
interpretation.		

• When	talking	about	a	single	future	event,	there	is	no	direct	frequentistic	
interpretation.	In	most	cases,	we	use	probability	to	quantify	uncertainty.	

• Weather	and	climate	are	complicated	phenomena.	We	need	the	notions	of	
chaos	and	predictability.	

• Mathematically,	probability	is	finite	and	additive	measure,	defined	for	a	set	of	
events.	No	philosophical	disputes	here.
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What	is	probability



Probability	and	statistical	theory	to	quantify	
uncertainty
• Short	history	

• Origins	in	gambling	theory.	Probabilities	for	
symmetric	repeatable	events,	like	throwing	a	
dice	(17.	century,	Fermat,	Pascal).	

• Statistical	theory	of	distributions,	central	limit	
theorem	(18.	century,	Gauss,	Laplace).	

• Mathematical	statistics,	statistical	inference	(20.	
century,	Kolmogorov,	Wald,	Fisher).
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Probabilistic	weather	forecasts

”There	is	20%	probability	for	rain	exceeding	10	mm,	tomorrow	between	8	–	12	
AM,	at	Kumpula,	Helsinki.”	

• The	meteorologist	best	opinion	(but	he/she	might	fear	feedback	for	false	
negatives).	

• Of	50	ENS	forecast	members,	20%	had	heavy	rain	(but	ensemble	system	might	
not	be	well	calibrated).	

• Of	5	different	deterministic	models,	1	forecasted	rain	(but	they	all	use	the	
same	observations	).	

• In	October,	it	usually	rains	20%	of	the	days	in	Helsinki	(no	skill).
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World	Cup	probabilities

• How	to	give	any	value	to	
different	forecasts.	

• Is	there	any	relation	to	
weather	forecasts.	

• Why	do	so	many	financial	
forecast	fail.	

• And	does	it	matter.
!6

2 Probabilistic Forecasts for the 2018 FIFA World Cup
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Figure 1: 2018 FIFA World Cup winning probabilities from the bookmaker consensus model.

stake has to be accounted for and the profit margin of the bookmaker (better known as the
“overround”) has to be removed (for further details see Henery 1999; Forrest, Goddard, and
Simmons 2005). Here, it is assumed that the quoted odds are derived from the underlying
“true” odds as: quoted odds = odds · ” + 1, where +1 is the stake (which is to be paid back to
the bookmakers’ customers in case they win) and ” < 1 is the proportion of the bets that is
actually paid out by the bookmakers. The overround is the remaining proportion 1 ≠ ” and
the main basis of the bookmakers’ profits (see also Wikipedia 2018 and the links therein).
Assuming that each bookmaker’s ” is constant across the various teams in the tournament
(see Leitner et al. 2010a, for all details), we obtain overrounds for all 26 bookmakers with a
median value of 15.2%.
To aggregate the overround-adjusted odds across the 26 bookmakers, we transform them
to the log-odds (or logit) scale for averaging (as in Leitner et al. 2010a). The bookmaker
consensus is computed as the mean winning log-odds for each team across bookmakers (see
column 4 in Table 1) and then transformed back to the winning probability scale (see column 3
in Table 1). Figure 1 shows the barchart of winning probabilities for all 32 competing teams.
According to the bookmaker consensus model, Brazil is most likely to win the tournament
(with probability 16.6%) followed by the current FIFA World Champion Germany (with
probability 15.8%). The only other teams with double-digit winning probabilities are France
(with 12.5%) and Spain (with 12.1%).
Although forecasting the winning probabilities for the 2018 FIFA World Cup is probably of
most interest, we continue to employ the bookmakers’ odds to infer the contenders’ relative
abilities (or strengths) and the expected course of the tournament. To do so, an “inverse”
tournament simulation based on team-specific abilities is used. The idea is the following:

1. If team abilities are available, pairwise winning probabilities can be derived for each
possible match (see Section 2).

2. Given pairwise winning probabilities, the whole tournament can be easily simulated to
see which team proceeds to which stage in the tournament and which team finally wins.

3. Such a tournament simulation can then be run su�ciently often (here 1,000,000 times)
to obtain relative frequencies for each team winning the tournament.

Probabilistic	forecasts	for	the	2018	FIFA	World	Cup	based	on	the	bookmaker	
consensus	model,	Achim	Zeileis,	Christoph	Leitner,	Kurt	Hornik		
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Table 1 

And the winner is… 
Simulated likelihood of each team to advance through the tournament (in %)

Winner Runner-Up Semi- 
Finalist

Quarter- 
Finalist

Winner 
Group  
Stage

Second 
Group  
Stage

Germany 24.0 36.7 51.3 66.7 68.6 22.0
Brazil 19.8 31.9 44.1 60.5 66.8 23.1
Spain 16.1 28.0 50.5 68.5 60.6 26.5
England 8.5 18.7 31.4 66.2 53.7 33.6

France 7.3 16.1 35.1 59.5 60.1 24.6

Belgium 5.3 11.6 23.8 56.9 38.3 43.7

Argentina 4.9 11.3 26.9 51.8 54.7 26.4

Portugal 3.1 8.0 21.8 39.8 25.2 38.2

Uruguay 1.8 5.5 15.8 32.0 42.5 34.3

Switzerland 1.8 5.0 11.5 22.9 19.7 39.6

Mexico 1.8 5.3 10.9 22.5 17.2 36.6

Italy 1.6 4.4 10.1 19.4 15.3 31.0

Russia 1.6 4.6 14.4 30.5 41.4 33.6

Poland 0.9 2.9 7.1 24.7 35.4 28.7

Colombia 0.5 1.8 5.0 20.0 28.2 27.9

Sweden 0.4 1.4 3.8 9.9 8.8 23.7

Iran 0.4 1.7 5.6 14.2 9.4 21.4

Nigeria 0.3 1.3 4.8 15.9 16.3 25.5

Peru 0.3 1.2 5.3 16.8 14.4 27.2

Serbia 0.2 1.0 2.8 7.7 8.7 22.8

Senegal 0.2 0.9 2.7 12.6 19.9 22.8

Iceland 0.2 0.7 3.7 13.6 13.8 23.5

Croatia 0.2 0.9 4.4 15.0 15.2 24.7

South Korea 0.2 0.6 1.9 6.0 5.4 17.7

Denmark 0.1 0.9 4.3 15.5 14.2 26.0

Australia 0.1 0.5 3.3 12.0 11.3 22.2

Morocco 0.1 0.3 2.2 6.8 4.9 13.9

Japan 0.1 0.4 1.6 9.8 16.6 20.6

Egypt 0.0 0.2 1.5 5.1 9.5 17.3

Tunisia 0.0 0.3 1.1 8.0 6.0 15.9

Costa Rica 0.0 0.2 0.9 3.9 4.7 14.5

Saudi Arabia 0.0 0.1 0.6 3.2 6.7 14.8

Panama 0.0 0.0 0.2 2.0 1.9 6.8

Source: UBS

Germany, Brazil, and Spain most 
likely to win…
According to our simulations, Ger-
many, Brazil, and Spain have the high-
est likelihood to win the tournament. 
Germany and Brazil are set for an easy 
start, while Spain will have to hit the 
ground running if they are to beat  
Portugal, the current European cham-
pions, in their opening game. Spain 
will have to hit the ground running to 
beat Portugal, the current European 
champion, in its opening game. From 
there, the going will get tougher for 
Spain and Brazil, who will possibly face 
Argentina and England, respectively,  
in the quarterfinals. Both are former 

champions. Germany, however, might 
face Belgium, another strong, young, 
and talented team, but De Rode 
 Duivels (the Red Devils) have so far not 
shown their best form in big tourna-
ments.

…but watch England, France, 
Belgium, and Argentina for surprises
Our simulations indicate that England, 
France, Belgium and Argentina still 
have a realistic chance of lifting the  
trophy. Argentina’s fate will strongly 
depend on the form of their star play-
ers in our view, which is an element of 
uncertainty and hard to capture with 
our quantitative model. France should 

How we’ve applied the insights from our investment process  
to the prediction of football matches

We’ve applied the insights and tools from our 
daily work as investment strategists to predict 
the likelihood of each team doing in the tour-
nament. Below, we share the key insights.

1. Be systematic. Not all of our predictions will 
be right. Some games are hard to call and 
others will simply end with a big surprise. 
But applying our framework to previous 
tournaments indicates that our model has  
a high degree of accuracy. We face a similar 
situation with our investment recommenda-
tions: Not all our calls are accurate. But by 
following a systematic investment process, 
we aim to maximize the number of correct 
calls and their magnitude.

2. Separate the wheat from the chaff. We’ve 
tested several different indicators before 
selecting a few variables that have worked 
best in the past. Investors have to deal with 
an overwhelming flow of new information 
each day. Distinguishing between the daily 
noise and important trends is crucial to 
avoid costly and needless portfolio realloca-
tions. 

3. Set aside your emotions. By relying on a 
quantitative framework, we effectively put 
our emotions to one side. Although we pre-
fer some teams over others, we strictly fol-
lowed the predictions of the model. Quanti-
tative signals also play an important role in 
our investment process. This assures that 
the qualitative aspects are not influenced by 
emotions or other behavioral traps.

Investing	and	football,	UBS	Chief	Investment	Office	GWM	
Investment	Research,	May	2018	



How	to	interpret	probability	statements

• Probability	forecast	is	tied	to	the	estimated	probability	
distribution	of	event.	The	distribution	contains	
information	on	the	likelihood	of	all	possible	events.	

• The	width	of	the	distribution	tells	about	the	
predictability.	

• Easiest	to	interpret	are	single	event	probabilities.	
• They	need	to	be	tied	to	time,	location,	duration	and	to	
a	threshold.	

• We	can	not	combine	probabilities	without	knowledge	on	
dependence	and	correlation.	

• P(A	or	B)	=	P(A)	+	P(B)	-	P(A	and	B)	
• P(A	and	B)	=	P(A|B)P(B)	 !7https://xkcd.com/1985/



Going	beyond	single	event	
probability	forecasts
• Two	dimensional	distribution	of	precipitation	
simultaneously	at	two	locations.	

• Marginal	distribution	at	location	1:	no	matter	what	
happens	at	locations	2.	

• Conditional	distribution:	conditional	on	some	event	at	2.	

• Dashed	line	is	the	conditional	distribution	at	location	1	
given	that	the	precipitation	at	2	will	be	<	0.3	mm/h.	

• Multi	dimensional	probabilities	are	easy	to	calculate	from	
model	ensembles,	but	their	consistent	calibration	is	a	
challenge. !8
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Difficulties	with	probabilities

• Probabilities,	especially	conditional	probabilities,	can	
fool	our	intuition.	

• Thinking,	Fast	and	Slow	by	Daniel	Kahneman:		
• People	overestimate	rare	probabilities.	
• Adding	more	information,	makes	the	scenario	more	
plausible	in	our	minds.	

• Risk	policies	are	difficult,	as	we	tend	to	avoid	
immediate	losses.	

• Simpson’s	paradox.	Change	in	the	background	
assumptions,	e.g.	different	climatologies.
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Probability of thunderstorm in  
Helsinki tomorrow at 9 AM while I am 
cycling to work.

Choose between: 
A. sure gain of $ 240  
B. 25% chance to gain $ 1,000  
    and 75% chance to gain nothing
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• Uncertainty	is	about	the	model	and	our	beliefs,	not	about	the	Nature.	

• Individual	probability	statements	of	single	future	events	are	measures	of	
subjective	belief.	

• They	can	be	based	on	objective	facts	and	must	be	consistent.	
• If				P(”rain	tomorrow”)	=	30	%				then			P(”no	rain	tomorrow”)	=	70%.	
• It	is	very	hard	to	assign	consistent	subjective	probabilities	to	complex	events.	
• Algorithmic,	model	based	forecasts	can	be	verified	against	observation	and	
tuned	to	be	consistent.

More	discussion	on	probability



• Probabilities	for	an	event	based	on	an	ensemble	of	forecasts	from	NWP	models.	

• Statistical	post-processing	of	NWP	output	from	a	single	model	run	or	the	output	
of	ensemble-based	NWP.	

• By	analysis	of	historical	weather	and	climate	data	to	yield	statistical	relationships	
between	currently	observable	predictors	and	the	future	observations	of	interest.	

• Meteorologist	subjective	interpretation	of	NWP	forecasts	and	other	information.

!11

How	to	make	probability	forecasts



• Confidence	and	likelihood	in	the	IPCC	Fifth	Assessment	Report.	
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Consistent	terminology	is	important

Likelihood	Terminology Likelihood	of	the	occurrence/	outcome
Virtually	certain >	99%	probability
Extremely	likely >	95%	probability
Very	likely >	90%	probability
Likely >	66%	probability
More	likely	than	not >	50%	probability
About	as	likely	as	not 33	to	66%	probability
Unlikely <	33%	probability
Very	unlikely <	10%	probability
Extremely	unlikely <	5%	probability
Exceptionally	unlikely <	1%	probability

Confidence	Terminology Degree	of	confidence	in	being	correct
Very	high	confidence At	least	9	out	of	10	chance
High	confidence About	8	out	of	10	chance

Medium	confidence About	5	out	of	10	chance
Low	confidence About	2	out	of	10	chance
Very	low	confidence Less	than	1	out	of	10	chance

FMI	POP	terminology
probability	of	precipitation change	for	rain	or	showers
less	than	10	% dry	weather
10	–	30	% small	chance
30	–	70	% medium	chance
70	–	90	% high	chance
over	90	% overall	change



• A	phenomena	is	deterministic,	if	its	final	state	can	be	predicted	form	initial	
conditions.	

• A	phenomena	is	stochastic	or	random	if	there	are	several	possible	final	states	
from	the	same	initial	state,	but	there	is	systematic	statistical	behaviour	in	the	
distribution	of	outcomes.	

• A	phenomena	is	chaotic,	if	a	small	change	in	initial	conditions	leads	eventually	
to	non	predictable	state.	

• The	weather	system:	stochastic	and	chaotic.	
• Numerical	weather	model:	deterministic	and	chaotic.

!13

Deterministic,	stochastic,	chaotic



• Numerical	models	describing	weather	are	chaotic:	a	small	perturbation	
in	the	initial	conditions	accumulates	and	makes	the	system	eventually	
non	predictable.		

• Small	change	=	one	bit	in	computer	representation.	

• By	perturbing	model	initial 
values	we	can	evaluate 
the	predictability!

!14

Predictability	and	chaos
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• No	matter	how	probability	forecasts	are	made	we	want	them	to	
have	good	performance	in	the	long	run.	

• Every	time	the	forecaster	says	rain	with	60%	probability,	we	
assume	that	in	6	out	of	10	times	it	rains.	

• So,	from	one	forecast	no	quality	statements	are	possible.

Quality	of	probability	forecasts
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How	to	verify	probabilities

• When	we	do	repeated	probability	statements,	they	can	be	verified	by	using	
actual	observations.	The	forecasted	probabilities	have	to	match	the	observed	
frequencies	(reliability).	Several	statistics	and	diagrams	are	used.
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Reliability diagram ROC 
Recommendations on the verification of local weather forecasts
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Example 7 - Reliability (left) and ROC (right) diagrams of one year of PoP (Probability of Precipitation) 
forecasts. The data are the same as in Example 5, where the PoPs were transformed into categorical 
yes/no forecasts by using 50 % as the “on/off” threshold.  The inset box in the reliability diagram shows 
the frequency of use of the various forecast probabilities and the horizontal dotted line the climatological 
event probability (cf. Example 5). The reliability curve (with open circles) indicates strong over-
forecasting bias throughout the probability range. This seems to be a common feature at this particular 
location as indicated by the qualitatively similar 10-year average reliability curve (dashed line). Brier 
skill scores (BSS) are computed against two reference forecast systems. Of these, climatology appears to 
be a much stronger “no skill opponent” than persistence. The ROC curve (right) is constructed on the 
basis of forecast and observed probabilities leading to different potential decision thresholds and 
respective value pairs of H and F, as described in the text. Also ROCA and ROC_SS values are shown. 
The black dot represents the single value ROC from the categorical binary case of Example 5 (H=0.7; 
F=0.17). 

6. Relating forecast verification to forecast value and forecast 
user’s decision making 

Verification measures are intended and expected to reveal the quality of forecasts. However, a successful 
forecast does not necessarily have any value to its final user, whereas a misleading forecast may possibly 
provide lots of valuable and/or useful information to another user. A forecast can be considered to exhibit 
value if it helps the end user to make decisions on the basis of that particular forecast, regardless of its skill. 
For example, forecasts of gale force winds may be (and quite often are) biased toward over-forecasting, 
resulting scores with low skill. Still, they may be of value to a user whose actions are economically very 
sensitive to strong winds. 

It is highly recommended to associate with a local verification scheme features that help to evaluate the 
potential economic value of the forecasts. This is especially important in an effort to strengthen the 
dialogue and collaboration with customers and end users. It is quite natural that a customer would want to get 
some feedback on the potential economical implications of forecast information. However, the key element 
in this chain is the customer himself. The end forecast producer, the meteorologist, cannot have solid  
knowledge of the economic implications or risks of particular weather events, and even less so can the 
developer or producer of the background NWP guidance (like ECMWF). 

Consider a decision maker who is sensitive to certain adverse weather events, for example gale force winds 
during a sailing event in a lake area, or occurrence of icing on a certain road network. The decision maker 
can then make judgements on taking some actions to prevent potential losses due to expected adverse 
weather. These actions would incur costs of an amount, say C. However, if actions were not taken and the 

 

Reliability and ROC diagrams of 
one year of Probability of 
Precipitation forecasts. The 
reliability curve (with open circles) 
indicates strong over-forecasting 
bias throughout the probability 
range.

The ROC curve is constructed on the 
basis of forecast and observed 
probabilities leading to different 
potential decision thresholds. The 
black dot represents the single value 
ROC when using 50% treshold (H=0.7; 
F=0.17). 

Figures by Pertti Nurmi.
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Example:	POP	at	FMI
• POP	at	FMI	by	multi	model	neighbourhood	processing.	
• Helsinki	Kaisaniemi	stations,	 
P(prec>0.1	mm/h)	24	h	fcst,	all	of	2017.
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figure:	Kaisa	Ylinen	FMI

Ensemble	forecasts
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• Conceptually,	the	best	way	to	make	probability	forecasts	for	complicated	events.	
• Run	the	same	forecast	model	with	perturbed	initial	conditions.	
• Probability	20%	means	that	10	out	of	50	ensemble	members	predict	the	event	to	
happen	at	the	specified	location	in	the	defined	time	window.		

• ENS	systems	have	to	be	tuned	to	 
match	predictability	and	account 
model’s	inaccuracies.	

• To	be	useful,	ensembles	have 
to	be	calibrated	to	correct	  
the	spread	and	remove	biases.



Example:	warm	May	in	Finland

• Probabilities	for	warm	weather	for	16.5.2018	12	UTC	with	25	h	lead	time.	
• Pink	colour	in	the	model	maps	on	left	means	P(Temp	>	25	°C)		>	90%		
• All	the	models	are	too	cold,	there	is	bias,	and	the	ensemble	spreads	are	too	narrow.	
• There	is	a	strong	need	for	post-processing	and	ensemble	calibration.
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Calibrating	ensemble	forecasts	by	past	observations
• ECMWF	EPS	with	51	members.	
• Harp	tool	from	the	Hirlam	group.	
• Ensemble	MOS	with	30	days	history.	
• EU	H2020	I-REACT	project.
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Conclusion	—	why	probability	forecasts

• By	quantifying	the	uncertainties	related	to	forecasts	we	give	more	information	
than	by	a	single	deterministic	forecast.	

• They	allow	better	handling	of	risks	associated	with	different	actions.  
”We	want	to	be	95%	sure	that	in	the	next	30	years	the	water	level	will	rise	more	
than	1	m	from	the	average	less	that	2	times.”	

• They	allow	for	better	verification	measures,	i.e.	which	account	for	the	
predictability.	

• There	are	still	no	perfect	systems	for	probability	forecasts,	work	to	be	done	on	
EPS	tuning	and	post-processing.

This is the last slide! Thank you!!21

Several people at FMI contributed this talk, including: 
Leila Hieta, Kaisa Ylinen, Juha Kilpinen, Marja-Liisa Tuomola, Carl Fortelius, Jussi Ylhäisi


