Comparison between simulated and measured icing in test spans

Hálfdán Ágústsson

Belgingur, halfdan@belgingur.is

Egill Thorsteins

Árni Jón Elíasson

Ólafur Rögnvaldsson Belgingur Bjørn Egil Nygaard met.no

Hallormsstaðaháls

Hallormsstaðaháls

Modeling in-cloud ice accretion

- The state of the atmosphere is simulated at high resolution using the WRF-model. The model is forced with the ECMWF-analysis as well as observations from Egilsstaðir for one sensitivity test.
- Atmospheric moisture is parameterized using the Thompson bulk scheme, with 100 droplets/cm³ which is considered characteristic for a maritime climate. The scheme predicts cloud water (Q_c), ice (Q_i), rain (Q_r), snow (Q_s) and graupel (Q_q).
- Ice accretion is modeled according to ISO 12494-2000 (Makkonen model). Assuming horizontal cylinder approach. Using wind speed, temperature and water phases from the WRF simulation. Three water phases can lead to icing: cloud water (Q_c), rain (Q_r) and snow (Q_s). Droplet number assumed as N_d=50 droplets/cm³.

WRF models used in study

Six different input series from WRF simulations are used for the icing model.

Model	Grid spacing [km]	Comment
WRF _{1km}	1	
WRF _{1km-F}	1	Forced through observation at Egilsstadir
WRF _{3km}	3	
WRF _{0.3km}	0.33	
WRF _{1km-F-A}	1	Same as WRF _{1km-F} , but measured temperature used and 3m/s added to simulated wind
WRF _{1km-A}	1	Same as WRF _{1km} , but measured temperature used and 3m/s added to simulated wind

F = Forced through observation at Egilsstadir

A = Adjusted, wind increased by 3 m/s and observed temperature from site used.

In-cloud icing episodes are associated with northerly winds and a low of East-Iceland

In-cloud icing episodes are associated with northerly winds and a low of East-Iceland

In-cloud icing 4-6 Dec. 2000

•Continuous accumulation for 52 hours, while temperature was slightly below zero. Icing also observed on parallel test span, but ice shedding influenced ice loading.

Highest icing observed during 1983-2010

Sections along simulated flow

WRF_{1km-Forced} simulation 4-6 Dec. 2000

WRF_{1km-Forced} simulation 4-6 Dec. 2000

WRF_{1km-Forced} simulation 4-6 Dec. 2000

4-6 Dec. 2000 - WRF_{1km-Forced} results with 1 km grid

- Lot of cloud water (Qc). Some snow and freezing drizzle
- Temperature simulated quite well
- Wind speed not high. Possibly slightly underestimated
- Improved results when forcing simulation through observation at Egilsstaðir

In-cloud icing during 4-6 Dec. 2000

Icing in the period 12 Nov. to 20 Dec. 2006

- Three events in the period 12. Nov. to 20 Dec. 2006
- Five icing measuring setups captured the icing at site. Only measurements from test span A are used.

WRF_{1km} simulation 12-14 Nov. 2006

Icing 13-30 Nov. 2006

- All models underestimates icing.
- WRF_{1km} predicts high mass of snow and low mass of super-cooled cloud droplets.
- 60% of WRF_{3km} icing is freezing drizzle and wet snow icing.

Icing 4-12 Dec. 2006

- The WRF_{3km} model highly underestimates the icing accretion
- The WRF_{1km} model performs reasonably but underestimates the observed icing by a factor of 1.7 when the ice shedding is taken into account. Part of the explanation may be the relative high amount of snow particles 7-9 Dec.
- The WRF_{1km-A} model gives increased accretion and it fits measurements quite well in the period of 3-6 Dec. The accumulation on the 7 Dec. is underestimated

Conclusions – WRF model

• On average, WRF correctly identifies icing events.

• Simulations predict considerable water content, capture reasonably well the temperature while winds may be underestimated.

- The WRF-simulations use 100 droplets/cm³. Reducing droplet number in the WRF-simulation leads to a somewhat different water particle distribution.
- Nudging of surface observations 25 km upstream improves results at icing site.
- Model performance increases with increased resolution, especially when going from 3 km to 1 km.

Conclusions – Icing model

- · Ice accretion rate is in general underestimated, especially for high ice loading.
- Model is not validated for loads above 15 kg/m and large ice diameters, which often have a rough surface, leading to incorrect formulas for collision and accretion efficiency, and ice density.
- The model is sensitive to temperatures slightly below 0°C, as the heat balance at the icing surface will not allow all particles to freeze.
- Dry snow (T < 0°C) causes no icing, which may not be valid for snow-fall through surface clouds with high water content and temperatures slightly below 0°C.
- The icing model is very sensitive to droplet size and increased accumulation occurs if droplets are fewer than 50 droplets/cm^{3.}
- Possible overestimation of observed icing due to other load distribution.
- Sensitivity of accretion to possibly underestimated winds, as well as small errors in e.g. the simulated locations of the 0°C isotherm and the maximum amount of super-cooled cloud condensate.

Wet-snow icing - "Work in progress"

For wet snow icing we need temperatures between approx 0°C and 2°C and water content of snow approx 10% to 40%

Wet-snow icing events in North-Iceland

Thank you to your attention !