Predictability of high-impact weather - a three case study

Einar Magnús Einarsson, Haraldur Ólafsson and Jón Egill Kristjánsson

What? / Why?

Three extreme weather events that were not very well predicted in medium and/or long term forecast

We want to know what went wrong in each case

Introduction

- The study contains 3 different cases.
- We ran the MM5 model with 36 km horizontal resolution and 40 vertical (sigma) levels. The size of the grid was 300*300. The Eta Planetary boundary layer scheme was used
- The model was ran from several different analysis (initial conditions)
 24 hours apart. Every piece of data comes from the ECMWF.
- Severy piece of input-data comes from the ECMWF.

1. Extreme precipitation in Norway

2. Windstorm in Denmark

in collaboration with Jon E. Kristjánsson and Guðrún Nína Petersen

3. Low west of Iceland Which will be the topic of this talk

Gildir 20.09.03 kl 12:00 (18.9.2003 kl. 12 + 48 klst.)

Gildir 20.09.03 kl 12:00 (17.9.2003 kl. 12 + 72 klst.)

Model info: V.3.7 GRELL REISNER2 36 km 40 levels

Windspeed (sigma no. 2) and SLP

42 0 7 14 21 28 38

The method:

We compare these two runs to see where the forecast derails.

We try to find a traceable link between the wrongly predicted event to a difference in the analysis of the "good" run from the same time step in the "bad" longer run.

In this case we got a "bad" 72h run which we then compare to a "good" 48h run.

Back to Iceland

valid: 20th of september 2003

The center of the low is misplaced and 15hPa lower than predicted

The steeper pressure gradient doubles the wind speed, from 10 to over 20 m/s in west Iceland

The steeper pressure gradient doubles the wind speed, from 10 to over 20 m/s in west Iceland Gildir 20.09.03 kl 12:00 (17.9.2003 kl. 12 + 72 klst.) 2:00 (18.9.2003 kl. 12 + 48 klst.) Gildir 20. Windspeed (sigma no. 2) and SLP (sigma no. 2) and SLP Windspee Model info: V.3.7 GRELL REISNER2 36 km 40 levels RELL REISNER2 36 km 40 ke Windspeed [m/s] Windspeed [m/s] o 7 14 21 28 14 21 28 35 35

slight increase there as well...

So what happened....

 6 hours into the run (for a clearer picture) we get this:

Warmer air in propagates north over the north american continent

Increased gradient

We get a higher 500 hPa/700hPa surfaces in the ridge west of Greenland

Image --> higher gradient and "more" cold air coming from the north

Cold advection

Warm advection:

Cold advection from the north

Resulting in a higher 500 hPa surface in the ridge west of Greenland

Image --> higher gradient and "more" cold air coming from the north

Cold air in the lower layers --> causes the
 300hPa surface to drop

Increase in vorticity aloft

--> deeper and more intense Low between
 Iceland and Greenland

And again:

The northerly wind was NOT so much greater

It was the N-S temperature gradient that did the trick.

The final low:

Hafið Þökk fyrir áheyrnina

(thanks)