On specific nature of atmosphere-land/sea interaction in polar regions Sergej Zilitinkevich¹⁻³

¹ Finnish Meteorological Institute, Helsinki, Finland
² INAR, University of Helsinki, Finland
³ Pan-Eurasian Experiment (PEEX), Europe-Russia-China

31st Nordic Meteorological Meeting – NMM31 Reykjavík, University of Iceland, 18-20.06.2018

CONTENT

<u>Energy and matter exchange at the Earth surface</u>: Current vision of roughness lengths especially for scalars (temperature, humidity, etc.) copied from engng fluid dynamics <u>disregards real features of natural surfaces</u> and yields big uncertainties in calculation of surface fluxes

Turbulent transports in the surface layer:

Monin-Obukhov (1954) Similarity Theory (MOST) underlying universally recognised flux-profile relations disregards

- <u>self-control</u> of turbulence in stable stratifications
- self-organised cells/rolls in unstable stratification
- <u>strong effect of static stability in free flow</u> on the surface fluxes in long-lived PBLs: POLAR DAY and POLAR NIGHT
- extra mixing over heterogeneous terrain

1. Stability dependence of roughness length for momentum

For urban and vegetation canopies with roughnesselement heights (20-50 m) comparable with Obukhov length scale $L = u_*^3 / (-F_b)$ the surface resistance and, hence, roughness length must depend on stratification

Experimental data

Sodankyla Meteorological Observatory, boreal forest. Height of trees ~13 m; measurement levels: 23, 25, 47 m

BUBBLE urban BL experiment, Basel, (Rotach et al., 2004). Height of buildings h ~ 14.6 m, measurement levels: 3.6, 11.3, 14.7, 17.9, 22.4, 31.7 m

For deep canopies, roughness length for momentum strongly depends of stratification

PAN EURASIAN EXPERIMENT (I - TOWARDS A NEW MULTINARTONAL MULT - TOWARDS A NEW MULTINARTONAL MULT - TOWARDS A NEW MULTINARTONAL MULTINARTONAL MULTINARTONAL - TOWARDS A NEW MULTINARTONAL MULT

2. Roughness lengths for scalars

<u>Heat transfer</u> and <u>heat roughness length</u> Z_{0T} in contrast to the momentum roughness length Z_{0u} <u>are</u> <u>controlled by molecular</u> viscosity and conductivity, does not matter how strong is turbulence and how deep are roughness elements.

(Z et al., 2001) roughness length for scalars:

$$z_{0T} = z_{0u} \exp\left(-C_{0T} \sqrt{\frac{z_{0u} u_*}{v}}\right)$$

 C_{0T} is empirical dimensionless universal constant

Empirical validation: temperature and humidity increments in the roughness layer over sea

Theoretical formulation:

$\delta\theta / T_* = 6.3 \text{Re}^{1/2} - 5 \text{ at } \text{Re} \ge 0.1$ $\delta q / q_* = 6.3 \text{Re}^{1/2} - 6 \text{ at } \text{Re} \ge 0.1$

agrees quite well with data, especially for humidity measured more accurately than very small aier-sea temperature increment

3. The effect of self organisation of convective turbulence on heat and mass transfer

Airborne measurements in the atmosphere (Williams, Hacker, 1992). Arrows show **self-organised wind pattern**. Solid lines show deviations of potential temperature θ from its mean value $\langle \theta \rangle$; the lines $\theta - \langle \theta \rangle = 0$ mark side walls of large buoyant plume.

IN EURASIAN EXPERIMENT (PEEX) OWARDS A NUW MULTINATIONAL, MULTIOSCIPUNE LIMART, ANG UMULTY AND INVINCIMENT SEARCH FFORT IN ANCTIC AND BOREAL 4 EURASIA REGIONS

MATIETEEN LAITOS Eteorologiska institutet NNISH Meteorological institut

Enhanced heat/mass transfer in free convection

Large-scale self-organised structures Convective winds towards the plume base Internal boundary layer \rightarrow mechanical turbulence (overlooked in conventional theories) **Strongly enhanced heat/mass transfer**

Heat-transfer in calm-weather convection

New law $F_{\theta} = f(h / z_{0u}) (gh/T_0)^{1/2} \Delta \Theta^{3/2}$ properly calculates the heat flux over rough surfaces whereas traditional theory underestimates this flux by an order of magnitude

I EURASIAN EXPERIMENT (PEEX) WARDS A NEW MULTINATIONAL, MULTIDISCIPUNE MARE, AIR QUALITY AND ENVIRONMENT EARCH EFFORT IN ARCTIC AND BOREAL UURASIA REGIONS

4. Stably stratified turbulence: <u>strong-mixing</u> in PBL and <u>weak-conductivity</u> aloft (Ri >Ri_c)

Shallow PBL over Bergen seen due to water haze (courtesy I. Esau). Old theory confuses <u>stable</u> PBL and <u>supercritically stable</u> free flow. EFB turbulence closure (Z et al., 2007-2013) resolves the problem

EURASIAN EXPERIMENT (PEEX) ARDS A NEW MULTINATIONAL, MULTIDISCIPLUNE MATE, AIR QUALITY AND EWVIRONMENT ARCH EFFORT IN ARICTIC AND BOREAL JRASIA REGIONS

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Self-control of turbulence in stable stratification via counter-gradient heat flux missed in K-1941, MO-1954

 F_{θ} -budget reveals <u>downgradient</u> and <u>countergradient</u> terms comprising the **factual** heat flux

$$F_{\theta} = C_1 t_T \beta \left\langle \theta^2 \right\rangle - C_2 t_T E_z \frac{\partial \Theta}{\partial z}$$

Key feedback assuring self-control (Z et al., 2007, 2013):

Increase in the temperature gradient $\partial \Theta / \partial z$ enhances

(1) total (<u>negative</u>) fluxes of heat F_{θ} and buoyancy $F_{b} = \beta F_{\theta}$

(2) hence mean squared temperature

$$\left\langle \boldsymbol{\theta}^{2} \right\rangle = -C_{3}t_{T}F_{\theta}\partial\Theta/\partial z$$

(3) and thus counter-gradient <u>positive</u> contribution to heat flux $C_1 t_T$

This compensates for enhancing of negative heat flux and prevents collapse of turbulence in super-critical stratification

NEURASIAN EXPERIMENT (PEEX) WARDS A NEW MULTINAFIONAL, MULTIDISCIPLINE MANEL AND GUALITY AND ENVIRONMENT SARCH EFFORT IN AUCTIC AND BOREAL EURASIA REGIONS

Conventionally Neutral PBL: EFB vs. LES

PBL with zero surface heat flux (as in GABLS1) but developing <u>against stable</u> <u>stratification in free atmosphere</u>, which causes negative (downward) heat flux in the upper part of PBL

Traditional theories/models overestimate PBL height and overwarms CN PBL

AN EURASIAN EXPERIMENT (PEEX) TOWARDS A NEW MULTIWARDONAL, MULTIDISCIPLINE CLIMATE, AN QUALITY AND ENVIRONMENT RESEARCH EFFORT IN ARCTIC AND BOREAL INF-BURASIA REGIONS

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Conclusions: Major failures of MOST

Unstable stratification

Wrong for all moments involving horizontal velocity fluctuations: *mean squared velocities, horizontal heat flux* Neglects effects of self-organised structures on *surface fluxes*

Strongly stable stratification

Wrong for *turbulent heat conductivity* and *Prandtl number* Wrongly prescribes ultimate *decay of turbulence at* Ri > 0.2

Long-Lived (LL) PBL controlled by persistent stable stability in free flow (buoyancy frequency $N \sim 0.01$); stable in polar night / over cold ocean and unstable in polar day / over warm ocean Incomplete scaling (missing N) \rightarrow wrong *flux-profile relations*

Heterogeneous terrain

Overlooks (i) Extra TKE generated by microcirculations; (ii) Extra heat flux >0 due to patchiness of surface temperature

Vincent van Gogh The Starry Night, June 1889, The Museum of Modern Art, New York

AN EURASIAN EXPERIMENT (PEEX) DS A NEW MULTINATIONAL, MULTIDISCI ATE, AIR QUALITY AND ENVIRON ARCH EFFORT IN ARCTIC AND BOR

PBL height and air pollution. What about ecosystems?

PAN EURASIAN EXPERIMENT (PEEX) -TOWARDS A NEW MULTINATIONAL, MULTIDISCIPLINE CLIMATE, AIR GUALITY AND ENVIRONMENT RESEARCH EFFORT IN ARCTIC AND BOREAL MAN-EURASIA REGIONS

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Remarks on turbulence in stable stratification

From hypothetical turbulent exchange coefficients and energetics limited to TKE

To EFB clsure (Z et al. 2007-18) <u>flux-budget equations</u>: down-gradient and nongradient transports, TKE + TPE energy budget,

self-control of heat flux,

surviving of turbulence in supercritical stratification,

and many other features of real turbulence

We are capable to accurately calcualteing airecosystem interaction

AN EURASIAN EXPERIMENT (PEEX) TOWARDS A NEW MULTINATIONAL, MULTIDISCIPLINE CLIMATE, AIR QUALITY AND ENVIRONMENT RESEARCH EFFORT IN ARCTIC AND BOREAL N-EURASIA REGIONS

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

