WOD

Operational and On Demand Weather Forecasts

Ólafur Rögnvaldsson Belgingur or@belgingur.eu Karolina Stanislawska Logi Ragnarsson João Hackerott

Outline of this talk

- * Why?
- * Design philosophy
- * WOD overview deployment and updates
- * Examples of applications
- * Summary

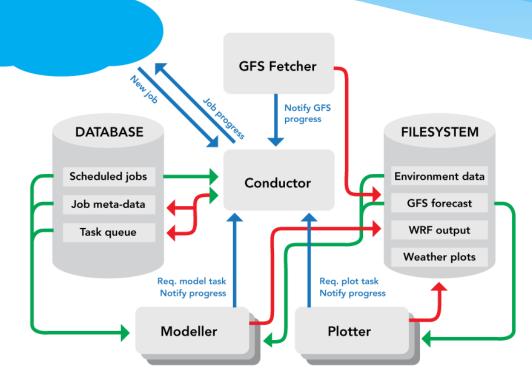
Why?

There is a need for the potential of running high resolution operational forecasts in many developing countries

- * Lack of necessary infrastructure is delaying progress
- * The WOD system solves some of these problems
 - * "Infrastructure in a box"
 - * Shares many features with the SARWeather system
- Partially funded by DfID and the EU via the ClimDev work programme
- * Done in collaboration with UNECA
- * Initial focus on Small Island States (SIDs) in Africa
 - * Runs operationally in Cabo Verde and Seychelles

Design philosophy

* Based on Open Source components


- * WRF/WPS weather model and accompanying software
- * **Python** language and libraries
- * Linux, PostgreSQL, and nginx webservices

* Event Driven

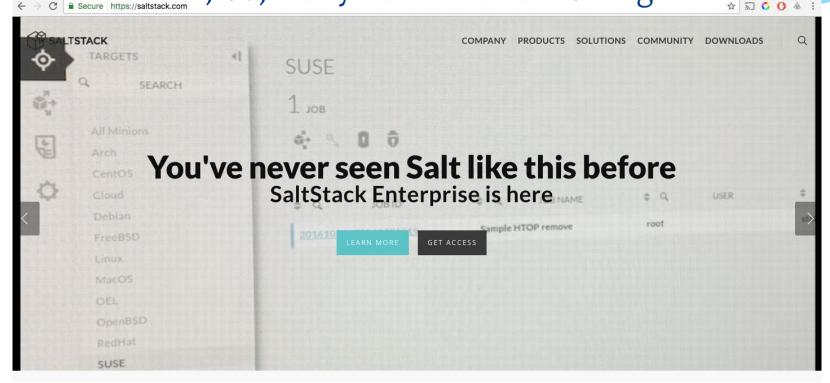
- Processing starts as soon as possible
- * Computing resources don't stand idle out of fear
- * Scalable and Resilient
 - * Just add computing nodes for increased throughput
 - * Other nodes step in if one is removed

WOD Overview

BELGINGUR

- Red lines: data being written
- Green lines: data being read
- Blue lines: messages being sent
- Blue boxes: individual tasks within the WOD system.
- Cylinders: data stores, both relational database and networked file-system
- Grey boxes: WOD system services that perform specific tasks, such are running the weather model (i.e. Modeller) or create weather charts (i.e. Plotter)

System description


- * Built around the WRF-Chem modelling system
- Initial and boundary data taken from the global GFS model as well as the GEFS and CFS systems
- * System installation is fast and highly automated
- Can be used to create conventional short- to mediumrange weather forecasts for any location on the globe as well as ensemble and S2S forecasts

Input can be GFS, GEFS, and/or CFS

- Can be used as a tool to provide input to other modelling systems, such as hydrological and agro-models
- * A wide variety of post-processing options are also available

Deployment and updates of WOD systems is automated with salt scripts after deploying hardware, OS, file-systems and networking

Deployment and updates Code is retrieved from GitHub, while WRF, WPS and associated binaries are retrieved from Belgingur's servers.

\mathbf{O}	This organization	Search	Pull requ	ests Issues	Gist		+-	- 12
2		gingur	ēams 0 🗐 Pro	ojects 0	0 Settings			
Ę K	epositories			jects 0 1	çr Settings			
Searc	ch repositories		Туре	: All 🗸 Lan	guage: All 🗸	Customize pinned repositories		New

Deployment and updates

- The deployment scripts are under source control along with WOD source code and is exercised and tested on Belgingur's Continuous Integration Servers with each change to the code
- This ensures that deployments and updates will run smoothly

Mask for the internal network. network.ip4.mask: 10.10.0.0/24

DNS Name of web server as known to external clients
web_server.name: wod.inmg-wod.org

Mapping from host-names to modeller definitions
troupe.modellers:

node01:

cores: 15 # Usually one less than the cores per machine

```
machines:
```

- ibnode01
- ibnode02
- ibnode03
- ibnode04

Mapping from host-names to the number of plotters to run on that host
troupe.plotters:
 cpv: 10

Number of hours of GFS data to fetch
troupe.gfs_fetcher.forecast_duration: 240

Specify reduced GFS region to speed up downloads.

troupe.gfs_fetcher.subregion:

Beware that the sub-region files are (2017.01.17) uncompressed, # so for regions over ~40% of the globe, the full download is smaller! toplat: 30 leftlon: -36 bottomlat: 2 rightlon: -8

Set to your own caching HTTP server if available
troupe.gfs_fetcher.proxy: proxy.belgingur.is:3128

The basic configuration is in the form of a deployment descriptor such as this one for Cabo Verde

Development

- * More flexible API's
- Will be possible to access upstream data via the same API's
 - Don't need to run a WOD forecast to access forecast charts and/or point forecasts from the GFS system
- * Add the potential for 3D-VAR data assimilation
- Being integrated to
 - * the JRC/Delft3D storm surge modelling system
 - SiteWatch, a fleet management software used by e.g.
 IceSAR

- The WOD post-processing provides charts, meteograms and forecast verification and is split into modules
 - By default, observations are taken from the MADIS website - <u>https://madis.ncep.noaa.gov</u>
 - Possible to integrate other data sources
- * Each module has a dedicated web interface and API
- Possible to control the dissemination of results
- The WOD system comes with a simple website that combines all three widgets

↔ swagger

https://wod-verne.belgingur.is/api/v2/swagger.json

Authorize

Explore

Belgingur Weather On Demand

Proprietary

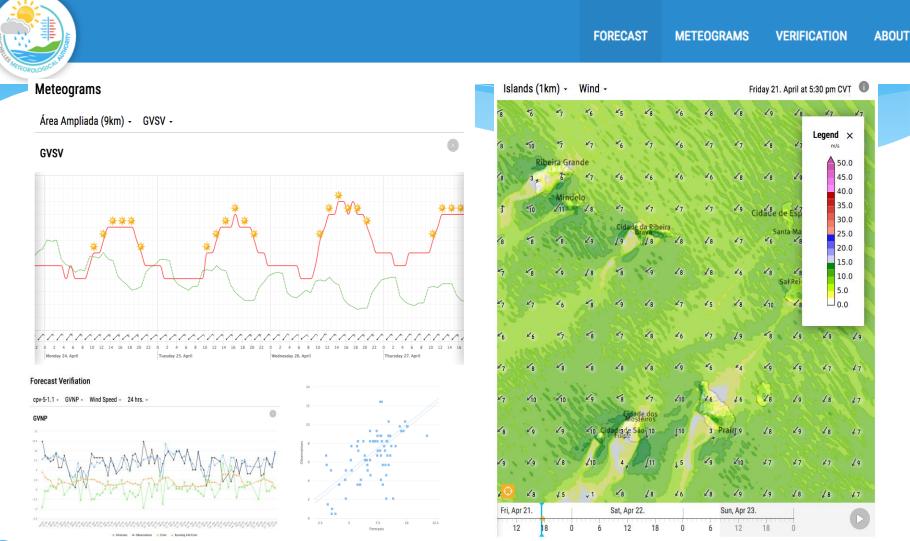
data-grid	Show/Hide	List Operations	Expand Operations
data-meta	Show/Hide	List Operations	Expand Operations
data-point	Show/Hide	List Operations	Expand Operations
meta-job	Show/Hide	List Operations	Expand Operations
meta-schedule	Show/Hide	List Operations	Expand Operations
widget-meteo	Show/Hide	List Operations	Expand Operations
plot	Show/Hide	List Operations	Expand Operations
widget-trellis	Show/Hide	List Operations	Expand Operations

[BASE URL: /api/v2 , API VERSION: 2.0.0]

	1					
	POST /meta/job				Create a job	
	Response Class (S Meta-data about the Model Example Val	newly created job			θ	
	<pre>{ "analysis": "s "client": "str "domains": [{ "center": "latitud "longitu }, "dimension</pre>	fing", { e": 0, de": 0				
	Response Content T Parameters	ype application/json				
	Parameter	Value	Description	Parameter Type	Data Type	
	user		Name of user on the client system if aplicable	formData	string	
	title	(required)	Human-readable name of the new job	formData	string	
	type	(required)	The name of a registered job type	formData	string	
	cen_lat	(required)	Latitude of forecast centre point	formData	double	
	cen_lon	(required)	Longitude of forecast centre point	formData	double	
	start		Start of new job as ISO timestamp	formData	string	
	length		Length of job in hours	formData	integer	
GINGUR	upstream_name		Name of configured upstream forecast to use data from	formData	string	
	upstream_member		Ensemble member of configured upstream forecast to use data from	formData	integer	

POST

/meta/job/{job}/schedule


Create a schedule from a job

Implementation Notes

Creates a new schedule with the given job as the prototype. The job will be associated with the new schedule, replacing the previous schedule if any.

Ø Response Class (Status 201) Meta-data about the newly created schedule Model Example Value { "created": "string". "expires": "string", "pri_base": 0, "prototype": "string", "ref": "string", "scrub_limit": "initial", "triggers": {} l Response Content Type application/json Parameters Parameter Value Description Parameter Type Data Type job (required) Reference to the requested path string job such as 20161004-150319cfa2e7b577de formData ref Reference string for the new string (required) schedule period_length 12 Length in hours of forecast formData integer period for scheduled jobs BELGINC period_offset 3 Start of forecast period in hours formData integer from the analysis date of the upstream data which triggers

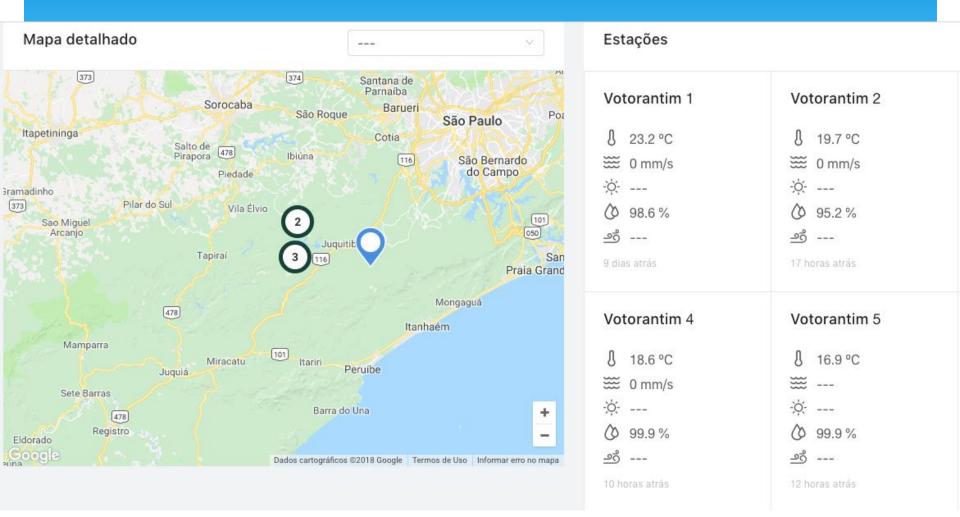
the schedule.

Produtividade

Cropview

T01 (Santa Helena/PR)

Lat:-24.8570958, Long:-54.3364532


Talhão: 100 ha - Solo Argiloso (Teor Argila 36 - 60) 🌈

Plantio: 15/02/2018 - Safrinha 130 Dias - Prod. 110 Sacas/ha 7/

Alta

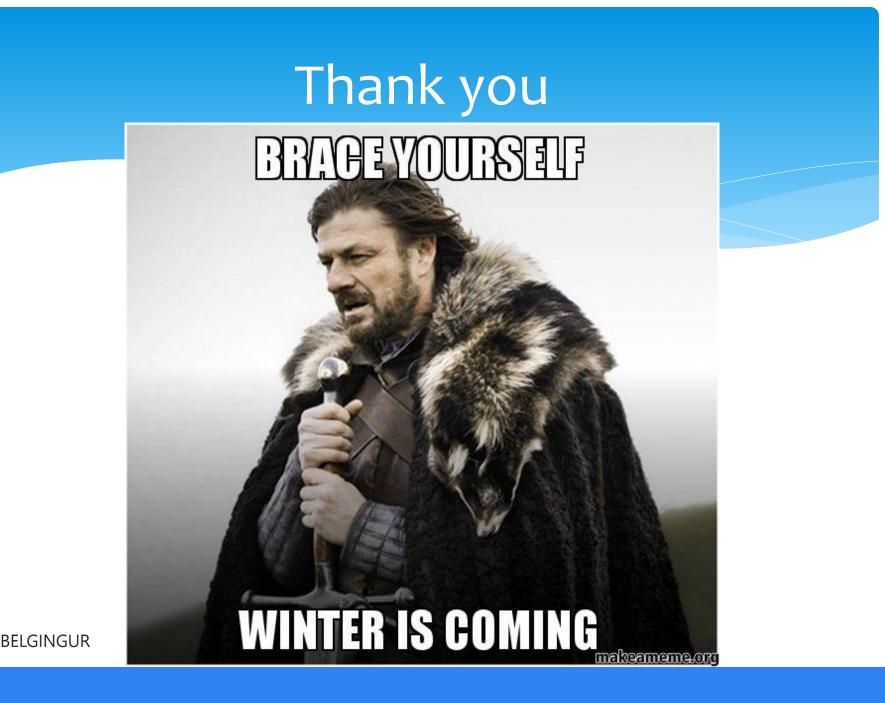
Baixa

Decêndio		ecêndio Temp. Média Chuva decêndio		Chuva acumulada	Excedente	Déficit	Fenologia	Produtividade	Sacas/ha	Total Sacas	
1	15/02/18	24/02/18	24°C	79 mm	79 mm	50 mm	0	Estabelecimento	100%	110	11.000
2	25/02/18	06/03/18	26°C	93 mm	172 mm	70 mm	0	Estabelecimento	100%	110	11.000
3	07/03/18	16/03/18	27°C	85 mm	257 mm	40 mm	0	Desenv. Vegetativo	100%	110	11.000
4	17/03/18	26/03/18	23°C	50 mm	307 mm	21 mm	0	Desenv. Vegetativo	100%	110	11.000
5	27/03/18	05/04/18	23°C	22 mm	329 mm	0	1 mm	Desenv. Vegetativo	99%	109	10.920
6	06/04/18	15/04/18	24°C	0 mm	329 mm	0	14 mm	Desenv. Vegetativo	91%	100	10.006
7	14/04/18	23/04/18	24°C	0 mm	329 mm	0	23 mm	Desenv. Vegetativo	74%	82	8.157
8	26/04/18	05/05/18	24°C	0 mm	329 mm	0	28 mm	Florescimento	61%	67	6.676
9	06/05/18	15/05/18	22°C	11 mm	340 mm	0	12 mm	Frutificação	56%	62	6.211
10	16/05/18	25/05/18	17°C	49 mm	389 mm	0	0	Frutificação	56%	62	6.211
11	26/05/18	04/06/18	17°C	47 mm	436 mm	0	0	Frutificação	56%	62	6.211
12	05/06/18	14/06/18	16°C	45 mm	481 mm	36 mm	0	Maturação	56%	62	6.211
13	15/06/18	24/06/18	16°C	45 mm	526 mm	39 mm	0	Maturação	56%	62	6.211

Previsão do tempo (Próximos 10 dias) - Votorantim 1

	04/05			05/05					06/05				07/05				08/05	5		09/05			
	 8 °C 28 °C ▲ 0.4 mm 		0 17 °	°C 🔻 2	25 °C 🔺		ß	14 °C	21	°C 🔺		Ŋ	17 °C	▼ 22 °	C 🔺		8 1	6 °C ▼	21 °C	•		§ 12 °(
			₩ 0.6 mm				\$ <u></u>	₩ 1.6 mm				***	₩ 0.9 mm				🗱 8 mm				🚟 0 mr		
<	·次 6 kWh/m².dia	-)	-泱́- 5 kWh/m².dia				÷ợ	·껒- 2 kWh/m².dia				-òʻ-	-泱́- 3 kWh/m².dia				·૽૾ૣ- 4 kWh/m².dia				-☆- 5 kW		
	◊ 44 % ▼ 95 % ▲ ◊			64 % 🔻 99 % 🔺				🍐 84 % 🔻 100 % ▲			🏠 74 % ▼ 100 % 🔺				🍐 72 % ▼ 99 % 🔺				() 57 %				
	ഛ് 0.9 m/s ▼ 3.5 m/s ▲	4	് 0.5	m/s 🔻	3.5 m/	s 🔺	_02	0.9 n	n/s 🔻	3.2 m/s		ೊ	1.7 m/s	₅ ▼ 4.	1 m/s 4	•	1	.5 m/s •	4.3	m/s 🔺	:	് 1.6	r
F	lora (Horário de Brasília)	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21
Temperatura C 🗸		27	28	28	27	25	23	19	19	19	19	19	19	19	19	19	19	18	17	17	19	21	23
Vol	ume de chuva \mbox{mm} $$	0	0	0	0	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rad	liação W/m² 🗸	800	761	603	480	315	92	0	0	0	0	0	0	0	0	0	0	0	0	0	58	282	463
Um	idade <u>%</u> 🗸	47	44	44	51	67	84	94	95	91	86	81	78	77	76	77	78	80	81	81	82	71	67
Vel	ocidade do vento $m/s \sim$	0.9	1.3	1.8	2.1	2.5	2.4	2	2.4	3	3.2	3.4	3.5	3.4	3.5	3.5	3.4	2.9	2.4	1.9	1.3	0.5	0.9
Direção do vento 🗧		\leftarrow	~	Ľ	Ľ	\downarrow	К	\rightarrow	7	7	7	7	7	7	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	7	К

* WOD is run operationally in Cabo Verde and Seychelles


- * http://syn.meteo.gov.sc
- * http://www.inmg-wod.org

Summary

- The WOD system can be used to create conventional shortto medium-range weather forecasts for any location on the globe as well as ensemble and S2S forecasts
- Designed to meet the needs of NMHs that have limited resources and little experience in running operational forecast systems
- * It is based on **Open Source** components
- * It is Event Driven
- * It is Scalable and Resilient
- Output can be used as input into other decision support software

