<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Registration from 08:00</td>
<td>Invited talk on Icelandic glaciers</td>
<td>Pavla Dagsson Waldhauser</td>
<td>Dino Zardi</td>
<td>Hálfdán Ágústsson</td>
</tr>
<tr>
<td>08:45</td>
<td>Welcome</td>
<td></td>
<td>Nikolas Aksamit</td>
<td>Chantal Staquet</td>
<td>Alexandre Paci</td>
</tr>
<tr>
<td>09:00</td>
<td>Invited talk on Icelandic volcanoes</td>
<td></td>
<td>Jim Steenburgh</td>
<td>Alec Van Herwijnen</td>
<td>Julian Quimbayo-Duarte</td>
</tr>
<tr>
<td>09:15</td>
<td></td>
<td></td>
<td>Byung-Gon Kim</td>
<td>Federico Garavaglia</td>
<td>Hans-Stefan Bauer</td>
</tr>
<tr>
<td>09:30</td>
<td>Dale Durran</td>
<td></td>
<td>James Curtis</td>
<td>Jean-Philippe Vidal</td>
<td>Gert-Jan Duine</td>
</tr>
<tr>
<td>09:45</td>
<td></td>
<td></td>
<td>Florentin Damiens</td>
<td>Hans-Stefan Bauer</td>
<td>Marco Falocchi</td>
</tr>
<tr>
<td>10:00</td>
<td>Alexander Gohm</td>
<td></td>
<td>Maximiliano Viale</td>
<td>Jutta Metzger</td>
<td>Daniel Martinez-Villagrassa</td>
</tr>
<tr>
<td>10:15</td>
<td>Lukas Umek</td>
<td></td>
<td>Mario Marcello Miglietta</td>
<td>Matthieu Le Lay</td>
<td>Kathrin Baumann-Stanzer</td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee & Poster P1</td>
<td>Coffee & Poster P3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td>Christoph Kruse</td>
<td>Samantha Smith</td>
<td>Matteo Buzzi</td>
<td>Joan Cuxart</td>
<td>Dave Whiteman</td>
</tr>
<tr>
<td>11:30</td>
<td>Martina Tudor</td>
<td>Nikola Bacic</td>
<td>Xiaohua Yang</td>
<td>Charles Chemel</td>
<td>Branca Ivan-can-Picek</td>
</tr>
<tr>
<td>11:45</td>
<td>Maria Vittoria Guarino</td>
<td>Yoo-Jun Kim</td>
<td>Iris Odak Plenkovic</td>
<td>Lorentzo Giovannini</td>
<td>Benedikt Bica</td>
</tr>
<tr>
<td>12:00</td>
<td>Stefano Serafin</td>
<td>Gang Zhang</td>
<td>Damian Wojcik</td>
<td>Tiphaine Sabatier</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Andrew Ross</td>
<td>Adriana Bailey</td>
<td>Haraldur Ólafsson</td>
<td></td>
<td>Martin Piringer</td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>Weather forecast</td>
<td>Weather forecast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Hans Volkert</td>
<td>Howard Bluestein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:15</td>
<td>David Muraki</td>
<td>Max Menchaca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>Ioana Colescu</td>
<td>Ulrike Romatschke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:45</td>
<td>Christopher Kruse</td>
<td>Miguel A. C. Teixeira</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Georg Mayr</td>
<td>Bianca Adler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:15</td>
<td>Richard Rotunno</td>
<td>Kristian Horvath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td>Coffee & Poster P2</td>
<td>Coffee & Poster P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:15</td>
<td>Evelyne Richard</td>
<td>Vanda Grubisic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Gregor Skok</td>
<td>Bart Geerts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td></td>
<td>Kent Moore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td>Byoung-Choeil Choi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:45</td>
<td>Reception in Reykjavik City hall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td>Presidential reception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optional evening excursion if weather permits</td>
</tr>
</tbody>
</table>

Coffee & Poster times: P1, P3, P5, P7
Oral presentations:

<table>
<thead>
<tr>
<th>Orals</th>
<th>Surname</th>
<th>Firstname</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1.1</td>
<td>Guðmundsson</td>
<td>Magnús Tumi</td>
<td>An invited talk on Icelandic volcanoes</td>
</tr>
<tr>
<td>O1.2</td>
<td>Durran</td>
<td>Dale</td>
<td>The influence of an isolated ridge on a mid-latitude cyclone and upper level jet.</td>
</tr>
<tr>
<td>O1.3</td>
<td>Damiens</td>
<td>Florentin</td>
<td>An adiabatic Foehn effect</td>
</tr>
<tr>
<td>O1.4</td>
<td>Gohm</td>
<td>Alexander</td>
<td>Penetration and interruption of Alpine foehn (PIANO): Description of upcoming field experiment</td>
</tr>
<tr>
<td>O1.5</td>
<td>Umek</td>
<td>Lukas</td>
<td>Penetration and interruption of Alpine foehn (PIANO): preliminary high-resolution numerical simulations</td>
</tr>
<tr>
<td>O1.6</td>
<td>Kruse</td>
<td>Christopher</td>
<td>Broad spectrum mountain waves</td>
</tr>
<tr>
<td>O2.1</td>
<td>Tudor</td>
<td>Martina</td>
<td>Influence of surface roughness on downslope windstorms and mountain waves</td>
</tr>
<tr>
<td>O2.2</td>
<td>Guarino</td>
<td>Maria Vittoria</td>
<td>Mountain wave turbulence in the presence of directional wind shear over the Rocky Mountains</td>
</tr>
<tr>
<td>O2.3</td>
<td>Stefano</td>
<td>Serafin</td>
<td>A simple model for the amplitude of lee waves on the boundary-layer inversion</td>
</tr>
<tr>
<td>O2.4</td>
<td>Ross</td>
<td>Andrew</td>
<td>Wake formation in the lee of a small but high island: modelling and observations</td>
</tr>
<tr>
<td>O2.5</td>
<td>Volkert</td>
<td>Hans</td>
<td>Mountain waves and cloud bands: case studies of 21 May 1937 and 1 February 2014 within a long research tradition</td>
</tr>
<tr>
<td>O2.6</td>
<td>Muraki</td>
<td>David</td>
<td>Gravity waves generated at small Rossby number by large amplitude topography</td>
</tr>
<tr>
<td>O2.7</td>
<td>Colfescu</td>
<td>Ioana</td>
<td>Detection of gravity waves across the Snaefellsnes Peninsula: A case study</td>
</tr>
<tr>
<td>O2.8</td>
<td>Kruse</td>
<td>Christopher</td>
<td>Mountain wave attenuation and momentum deposition in sheared environments</td>
</tr>
<tr>
<td>O2.9</td>
<td>Mayr</td>
<td>Georg</td>
<td>The community foehn classification experiment</td>
</tr>
<tr>
<td>O2.10</td>
<td>Rotunno</td>
<td>Richard</td>
<td>Origin of the lee-side hydraulic jump</td>
</tr>
<tr>
<td>O3.1</td>
<td>Richard</td>
<td>Evelyne</td>
<td>Heavy Precipitation and Flash Flood Events over Eastern Pyrenees</td>
</tr>
<tr>
<td>O3.2</td>
<td>Skok</td>
<td>Gregor</td>
<td>Forecast verification of precipitation and wind in complex terrain</td>
</tr>
<tr>
<td>O3.3</td>
<td>Jóhannesson</td>
<td>Tómas</td>
<td>The Enhancement of Lake-Effect Precipitation over the Tug Hill Plateau during the Ontario Winter Lake-effect Systems (OWLeS) Field Program</td>
</tr>
<tr>
<td>O3.4</td>
<td>Kim</td>
<td>Byung-Gon</td>
<td>Characteristics of Easterly-Induced Snowfall in the Yeongdong region of Korea</td>
</tr>
<tr>
<td>O3.5</td>
<td>James</td>
<td>Curtis</td>
<td>Simulations of convective flash flood events in southern Switzerland</td>
</tr>
<tr>
<td>O3.6</td>
<td>Viale</td>
<td>Maximiliano</td>
<td>Orographic effects of the subtropical and extratropical Andes on precipitating clouds</td>
</tr>
<tr>
<td>O3.7</td>
<td>Kingsmill</td>
<td>David</td>
<td>Terrain-trapped airflows and orographic rainfall along the coast of northern California: Horizontal and vertical structures of kinematics and precipitation</td>
</tr>
<tr>
<td>O3.8</td>
<td>Miglietta</td>
<td>Mario Marcello</td>
<td>Role of the orography in the generation of a tornadic supercell in the Mediterranean</td>
</tr>
<tr>
<td>O3.9</td>
<td>Smith</td>
<td>Samantha</td>
<td>Use of a sub-grid orographic rain enhancement scheme in the MetUM</td>
</tr>
<tr>
<td>O3.10</td>
<td>Panzieria</td>
<td>Luca</td>
<td>Dual-pol radar based hydrometeor classification: analysis of orographic precipitation mechanisms</td>
</tr>
<tr>
<td>O3.11</td>
<td>Kim</td>
<td>Yoo-Jun</td>
<td>Study on characteristics of snow crystal from the two-layer cloud structure in Yeongdong region of Korean Peninsula</td>
</tr>
<tr>
<td>O3.12</td>
<td>Smith</td>
<td>Ronald</td>
<td>Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region</td>
</tr>
</tbody>
</table>
O6.5 Bailey Adriana
Precipitation scavenging effects on Mt. Washington cloud chemistry

O7.1 Bluestein Howard
The environment of orographic wave clouds in the lee of the Colorado Front Range (and Oklahoma)

O7.2 Menchaca Max
The Influence of Mountain-Forced Waves on the Atmospheric Kinetic Energy Spectrum

O7.3 Romatschke Ulrike
Photogrammetric analysis of rotor clouds observed during T-REX

O7.4 Teixeira Miguel A.C
Trapped lee waves at an inversion in flow over axisymmetric hills: theory and laboratory measurements of the drag

O7.5 Adler Bianca
The impact of upstream flow on the boundary layer in a valley – observations and high-resolution simulations

O7.6 Horvath Kristian
Observational and numerical analysis of pulsations and turbulence in a bora downslope windstorm event

O8.1 Grubisic Vanda
Atmospheric rotors, downslope windstorms and severe turbulence in a deep long valley

O8.2 Geerts Bart
Radar kinematic information as surrogate for isentropes in stratiform orographic storms

O8.3 Moore Kent
The impact of resolution on the representation of wind field in the vicinity of large Greenlandic fjords

O8.4 Choi Byoung-Choel
Observation plans of ICE-POP2018 and the preliminary results

O9.1 Dagsson Waldhauserova Pavla
Impact of Icelandic volcanic dust on cryosphere

O9.2 Aksamit Nikolas
Coherent structures in the alpine atmospheric surface layer coupled with blowing snow response

O9.3 Van Herwijnen Alec
Investigating time scales in the meteorological forcing on snow avalanche activity

O9.4 Garavaglia Federico
MODIS snow cover data for calibration and evaluation of hydrological models in French mountainous regions

O9.5 Vidal Jean-Philippe
Hydrometeorological reconstruction of snow-influenced streamflow series in France since 1871

O9.6 Helbig Nora
Parameterizing surface wind speed in complex topography for coarse-scale models

O9.7 Hughes Mimi
Dynamical downsampling overcomes deficiencies in gridded precipitation products in the Sierra Nevada, California

O9.8 Le Lay Matthieu
Glaico-hydrological modelling on few alpine catchments: from recent past simulation to scenarios of future evolution.

O10.1 Zängl Günther
Cooling by melting snowfall in Alpine valleys: could its predictability get improved in the near future?

O10.2 Buzzi Matteo
Real time bias correction of very high resolution weather forecasting models for nowcasting in complex terrain

O10.3 Yang Xiaohua
Sub-kilometer modelling in operational NWP for areas with complex orography

O10.4 Odak Plenkovic Iris
Wind speed analog-based predictions in complex topography

O10.5 Wojcik Damian
Anelastic and compressible EULAG solvers for limited-area numerical Alpine weather prediction in the COSMO consortium

O10.6 Ólafsson Haraldur
Mountains and meteorological and climatological extremes in Iceland

O11.1 Zardi Dino
Experimental validation of a modelling chain simulating the dispersion of pollutants from the incinerator of Bolzano (Italy)

O11.2 Staquet Chantal
On the relationship between atmospheric dynamics and PM10 concentration in the Arve Valley around Passy

O11.3 Quimbayo-Duarte Julian
Impact of along-valley orographic variations on the dispersion of passive tracers in a stable atmosphere: an idealized study.

O11.4 Bauer Hans-Stefan
Investigation and evaluation of atmospheric processes in orographic terrain applying the WRF model with very high resolution: examples from selected cases

O11.5 Duine Gert-Jan
Influence of horizontal grid spacing in mountainous terrain on simulated planetary boundary layer depths in large-scale transport models

O11.6 Comola Francesco
Large eddy simulation of snowfall preferential deposition over complex topography

O11.7 Rotach Mathias
The spatial variability of the temperature structure in a major east-west oriented valley in the Alps

O11.8 Montani Andrea
Limited-area ensemble forecasts during Sochi-2014 Winter Olympics: multi-model vs single-model approach
<table>
<thead>
<tr>
<th>Session</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Cuxart</td>
<td>Joan Evolution of the temperature profile during the life-cycle of a valley-confined cold-pool in the Pyrenees</td>
</tr>
<tr>
<td>12.2</td>
<td>Chemel</td>
<td>Charles Local and non-local controls on a persistent cold-air pool in the Arve River Valley</td>
</tr>
<tr>
<td>12.3</td>
<td>Giovannini</td>
<td>Lorenzo The thermally driven wind system of the Adige Valley in the Alps</td>
</tr>
<tr>
<td>12.4</td>
<td>Sabatier</td>
<td>Tiphaine Wintertime circulation in the Chamonix-Mont-Blanc valley from scanning wind lidar measurements (Passy-2015 field experiment) and numerical simulations</td>
</tr>
<tr>
<td>12.5</td>
<td>Piringer</td>
<td>Martin Boundary-layer profiling with ceilometers in complex terrain</td>
</tr>
<tr>
<td>12.6</td>
<td>Doyle</td>
<td>James Trailing Mountain Waves</td>
</tr>
<tr>
<td>12.7</td>
<td>Goger</td>
<td>Brigitta How essential are 3D shear effects for the representation of the turbulence kinetic energy (TKE) structure in an Alpine valley?</td>
</tr>
<tr>
<td>12.8</td>
<td>Babic</td>
<td>Nevio Characteristics of the spectral gap in a valley convective boundary layer</td>
</tr>
<tr>
<td>12.9</td>
<td>Lehner</td>
<td>Manuela Spatial variations in the diurnal cycle of turbulent fluxes in an east-west oriented valley</td>
</tr>
<tr>
<td>12.10</td>
<td>Vecenaj</td>
<td>Željko Integral length scales in atmospheric surface boundary layers</td>
</tr>
<tr>
<td>12.11</td>
<td>Calaf</td>
<td>Mark Dependence of similarity theory on turbulence anisotropy</td>
</tr>
<tr>
<td>13.1</td>
<td>Doyle</td>
<td>James The Impact of Mount Washington on the Vertical Structure of Temperature and Moisture and the Height of the Boundary Layer</td>
</tr>
<tr>
<td>13.2</td>
<td>Pitzner</td>
<td>Kristian Impact of higher boundary temperatures on simulations of atmospheric ice accretion on structures during the 2015-2016 icing winter in West-Norway</td>
</tr>
<tr>
<td>13.3</td>
<td>Bica</td>
<td>Benedikt Daily and sub-daily extreme rainfall over the Swiss Alps: a climatology</td>
</tr>
<tr>
<td>13.4</td>
<td>Gabella</td>
<td>Marco Multi-sensor precipitation estimation in the Alps: challenges and opportunities</td>
</tr>
<tr>
<td>13.5</td>
<td>Pattantyus</td>
<td>Andre US Army Research Lab's Meteorological Sensor Array</td>
</tr>
<tr>
<td>13.6</td>
<td>Renfrew</td>
<td>Ian The causes of foehn warming in the lee of mountains</td>
</tr>
<tr>
<td>13.7</td>
<td>Bica</td>
<td>Benedikt On forecasting snow surface temperature in complex alpine terrain</td>
</tr>
<tr>
<td>13.8</td>
<td>Ágústsson</td>
<td>Hálfdán Examples of applications of mesoscale meteorology in the complex orography of Norway</td>
</tr>
<tr>
<td>13.9</td>
<td>Paci</td>
<td>Alexandre The Cerdanya-2017 field experiment: an overview of the campaign and a few preliminary results</td>
</tr>
<tr>
<td>13.10</td>
<td>Udina</td>
<td>Mireia Downslope windstorms, mountain waves, orographic precipitation and associated processes analysis during 10-17 January 2017 in The Cerdanya-2017 field experiment</td>
</tr>
<tr>
<td>13.11</td>
<td>Martinez-Villagrasa</td>
<td>Daniel The Cerdanya Cold Pool Experiment 2015 (CCP15): a field campaign study of the cold pool in the largest pyrenean valley</td>
</tr>
<tr>
<td>13.12</td>
<td>Falocchi</td>
<td>Marco Lidar observations and high-resolution modelling of a wind jet at the exit of the Isarco Valley (Italy)</td>
</tr>
<tr>
<td>13.13</td>
<td>Metzger</td>
<td>Jutta Periodic wind systems in the Dead Sea valley – first comprehensive measurements of their characteristics and evolution</td>
</tr>
<tr>
<td>13.14</td>
<td>Baumann-Stanzer</td>
<td>Kathrin Long-range transport to summits north, south and at the Eastern Alpine divide – an outstanding Sahara dust event</td>
</tr>
<tr>
<td>13.15</td>
<td>Petersen</td>
<td>Guðrún Nina Gap wind and wakes in SE-Iceland on 18 October 2016</td>
</tr>
<tr>
<td>13.16</td>
<td>Whiteman</td>
<td>Dave Interactions of a mesoscale katabatic flow with a small crater basin to produce cold and warm air intrusions, flow bifurcations and a hydraulic jump</td>
</tr>
<tr>
<td>13.17</td>
<td>Ivancan-Picek</td>
<td>Branka Processes leading to heavy precipitation over north-eastern Adriatic during the HyMeX SOP1</td>
</tr>
<tr>
<td>13.18</td>
<td>Bica</td>
<td>Benedikt INCA analysis and nowcasting as part of the international collaborative experiments for the PyeongChang Olympic and Paralympic Games 2018 (ICE-POP 2018)</td>
</tr>
</tbody>
</table>
Poster presentations:

<table>
<thead>
<tr>
<th>Poster</th>
<th>Surname</th>
<th>Firstname</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1.1</td>
<td>Guarino</td>
<td>Maria Vittoria</td>
<td>The effects of directional wind shear on CAT generation by orographic gravity-wave breaking</td>
</tr>
<tr>
<td>P1.2</td>
<td>Kruse</td>
<td>Christopher</td>
<td>Comparison of resolved and parameterized orographic gravity waves over New Zealand, the Andes, and the Himalayas</td>
</tr>
<tr>
<td>P1.3</td>
<td>Udina</td>
<td>Mireia</td>
<td>Mountain wave events and associated rotors over the Pyrenees during The Cerdanya-2017 field experiment: observations and model simulations</td>
</tr>
<tr>
<td>P1.4</td>
<td>Teixeira</td>
<td>Miguel A.C</td>
<td>The importance of boundary layer friction in the representation of lee rotor onset using linear theory</td>
</tr>
<tr>
<td>P1.5</td>
<td>Stiperski</td>
<td>Ivana</td>
<td>Water tank experiments on stratified flow over double mountain-shaped obstacles at high-Reynolds number</td>
</tr>
<tr>
<td>P1.6</td>
<td>Horvath</td>
<td>Kristian</td>
<td>Numerical analysis of a ducted internal gravity-wave package causing an exceptional meteotsunami event in the Adriatic</td>
</tr>
<tr>
<td>P1.7</td>
<td>Álvarez</td>
<td>Manuel</td>
<td>An unexpected severe downslope wind event in Catalonia</td>
</tr>
<tr>
<td>P1.8</td>
<td>Nikolov</td>
<td>Dimitar</td>
<td>History of the mountain meteorology in Bulgaria</td>
</tr>
<tr>
<td>P2.1</td>
<td>Steenburgh</td>
<td>Jim</td>
<td>Validation of Global Ensemble Precipitation Forecasts and the Implications of Statistical Downscaling over the Western U.S.</td>
</tr>
<tr>
<td>P2.2</td>
<td>Steenburgh</td>
<td>Jim</td>
<td>Validation and Intercomparison of Quantitative Precipitation Forecasts from the NCAR Cloud-Permitting Ensemble and Operational Models over the Western U.S.</td>
</tr>
<tr>
<td>P2.3</td>
<td>Tudor</td>
<td>Martina</td>
<td>Air pressure disturbances that cause meteotsunamis</td>
</tr>
<tr>
<td>P2.4</td>
<td>Tudor</td>
<td>Martina</td>
<td>Sea surface temperature and forecast precipitation on the surrounding mountains</td>
</tr>
<tr>
<td>P2.5</td>
<td>Serafin</td>
<td>Stefano</td>
<td>Measurements and probabilistic forecasting of ice formation on wind turbines at a hilltop site in Germany</td>
</tr>
<tr>
<td>P2.6</td>
<td>Piotrowski</td>
<td>Zbigniew</td>
<td>Consistent implicit compressible/soundproof EULAG dynamical core for COSMO model - status and challenges</td>
</tr>
<tr>
<td>P2.7</td>
<td>Álvarez Téllez</td>
<td>Manuel</td>
<td>Towards an operational method to forecast snow events at low altitude in Catalonia</td>
</tr>
<tr>
<td>P2.8</td>
<td>Kirchgaessner</td>
<td>Amélie</td>
<td>Föhn events across the Antarctic Peninsula and their connection to local and regional meteorology</td>
</tr>
<tr>
<td>P3.1</td>
<td>Kingsmill</td>
<td>David</td>
<td>Terrain-trapped airflows and orographic rainfall along the coast of northern California: Long-term kinematic and precipitation characteristics</td>
</tr>
<tr>
<td>P3.2</td>
<td>Skok</td>
<td>Gregor</td>
<td>Comparison and optimization of radar based hail detection algorithms in Slovenia</td>
</tr>
<tr>
<td>P3.3</td>
<td>Smith</td>
<td>Ron</td>
<td>Isotope Fractionation and Orographic Precipitation over New Zealand</td>
</tr>
<tr>
<td>P3.4</td>
<td>Durran</td>
<td>Dale</td>
<td>What causes weak orographic rain shadows? Insights from case studies in the cascades and idealized simulations.</td>
</tr>
<tr>
<td>P3.5</td>
<td>Grubisic</td>
<td>Vanda</td>
<td>Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change</td>
</tr>
<tr>
<td>P3.6</td>
<td>Viale</td>
<td>Maximiliano</td>
<td>Precipitation impacts of atmospheric rivers on the west coast of southern South America</td>
</tr>
<tr>
<td>P4.1</td>
<td>Gugerli</td>
<td>Rebecca</td>
<td>Using a cosmic ray sensor and weather radar composites to estimate the snow water equivalent on a Swiss glacier</td>
</tr>
<tr>
<td>P4.2</td>
<td>Zardi</td>
<td>Dino</td>
<td>Accuracy of high-resolution gridded precipitation and temperature datasets in the Alps: evaluation by hydrological modelling in the Adige catchment (Italy)</td>
</tr>
<tr>
<td>P4.3</td>
<td>Richter</td>
<td>Bettina</td>
<td>Forcing snow cover models with meteorological data to derive snow instability for avalanche forecasting</td>
</tr>
<tr>
<td>P4.4</td>
<td>Bellaire</td>
<td>Sascha</td>
<td>Measured and modeled snow cover properties across the Greenland Ice Sheet</td>
</tr>
<tr>
<td>P4.5</td>
<td>Bellaire</td>
<td>Sascha</td>
<td>On forecasting wet-snow avalanche activity using simulated snow cover data</td>
</tr>
<tr>
<td>P4.6</td>
<td>Ross</td>
<td>Andrew</td>
<td>The impact of foehn winds on the Larsen C ice shelf, Antarctic Peninsula</td>
</tr>
<tr>
<td>Page</td>
<td>Author</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>P4.7</td>
<td>Nikolov</td>
<td>Recent Tendencies in the Regime of the Snow Cover Seasonal Maxima in the Mountain Regions of Bulgaria - Preliminary Results</td>
<td></td>
</tr>
<tr>
<td>P4.8</td>
<td>Þorsteinsson</td>
<td>Global Cryosphere Watch</td>
<td></td>
</tr>
<tr>
<td>P4.9</td>
<td>Koh</td>
<td>Characteristics of Heavy Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in Korea</td>
<td></td>
</tr>
<tr>
<td>P5.1</td>
<td>Skok</td>
<td>Nocturnal cooling in a very shallow cold air pool</td>
<td></td>
</tr>
<tr>
<td>P5.2</td>
<td>Kalthoff</td>
<td>Exchange processes in the boundary layer over a mountainous island – observations and high-resolution simulations</td>
<td></td>
</tr>
<tr>
<td>P5.3</td>
<td>Price</td>
<td>LANFEX: Understanding fog behaviour in a region of small hills.</td>
<td></td>
</tr>
<tr>
<td>P5.4</td>
<td>Price</td>
<td>High resolution modelling of fog formation in complex terrain</td>
<td></td>
</tr>
<tr>
<td>P5.5</td>
<td>Lehner</td>
<td>Temperature and wind speed oscillations at Arizona’s Meteor Crater</td>
<td></td>
</tr>
<tr>
<td>P5.6</td>
<td>Palomaki</td>
<td>Meteorological observations in a valley during the 21 August 2017 solar eclipse</td>
<td></td>
</tr>
<tr>
<td>P5.7</td>
<td>Babic</td>
<td>Convective plumes in a daytime valley atmosphere: Structure, scaling and flux contributions</td>
<td></td>
</tr>
<tr>
<td>P5.8</td>
<td>Hristinski</td>
<td>Comparison of different configurations of the TOUCANS system of turbulence parametrizations</td>
<td></td>
</tr>
<tr>
<td>P5.9</td>
<td>Giovannini</td>
<td>Air quality management along the Brenner corridor in the Italian Alps: the BrennerLEC project</td>
<td></td>
</tr>
<tr>
<td>P5.10</td>
<td>Duine</td>
<td>Greenhouse gas budgets and convective boundary layer heights in mountainous terrain</td>
<td></td>
</tr>
<tr>
<td>P5.11</td>
<td>Schmidli</td>
<td>Predicting local winds in a deep Alpine valley under fair weather conditions</td>
<td></td>
</tr>
<tr>
<td>P5.12</td>
<td>Martinez-Villagrana</td>
<td>Influence of a valley exit jet on the experimental site of the BLLAST field campaign</td>
<td></td>
</tr>
<tr>
<td>P5.13</td>
<td>Stiperski</td>
<td>Scale interactions in katabatic flows</td>
<td></td>
</tr>
<tr>
<td>P5.14</td>
<td>Stiperski</td>
<td>Scaling the downslope flows in mountainous terrain</td>
<td></td>
</tr>
<tr>
<td>P6.1</td>
<td>Fazzini</td>
<td>Earthquake-triggered avalanches along Central Apennines (Italy) in January 18th, 2017.</td>
<td></td>
</tr>
<tr>
<td>P6.2</td>
<td>Skok</td>
<td>Objective climate classification of Slovenia</td>
<td></td>
</tr>
<tr>
<td>P6.3</td>
<td>Zoran</td>
<td>Carpathian mountain forest vegetation and its responses to extreme climate stressors</td>
<td></td>
</tr>
<tr>
<td>P6.4</td>
<td>Savastru</td>
<td>Climate changes impacts on mountain vegetation land cover from time-series satellite imagery</td>
<td></td>
</tr>
<tr>
<td>P6.5</td>
<td>Renfrew</td>
<td>Meteorological controls on local and regional volcanic ash dispersal</td>
<td></td>
</tr>
<tr>
<td>P6.6</td>
<td>Fazzini</td>
<td>Extreme temperatures in the cold air pool of the central Apennines (Italy): comparison with those of the Veneto Pre-Alps during winter 2016-17</td>
<td></td>
</tr>
<tr>
<td>P6.7</td>
<td>Fazzini</td>
<td>Intense snowfalls of January 2017 along the central-southern Apennines (Italy), in comparisons with the 2015, 2012 and 205 events.</td>
<td></td>
</tr>
<tr>
<td>P6.8</td>
<td>Baumann-Stanzer</td>
<td>Environmental Research and Monitoring at Sonnblick Observatory</td>
<td></td>
</tr>
<tr>
<td>P6.9</td>
<td>Trapero</td>
<td>CLIM’PY: Characterization of the evolution of climate and provision of information for adaptation in the Pyrenees</td>
<td></td>
</tr>
<tr>
<td>P6.10</td>
<td>Martinez-Villagrana</td>
<td>BOU: a low-cost tethered balloon sensing system for monitoring the lower atmospheric boundary-layer</td>
<td></td>
</tr>
<tr>
<td>P6.11</td>
<td>Fazzini</td>
<td>Identification of the annual 0°C and -1°C isotherms current elevation and recent altimetric trends in the Italian Eastern Alps</td>
<td></td>
</tr>
<tr>
<td>P6.12</td>
<td>Fazzini</td>
<td>Glacial morpho-climatic system analysis of the swedish lapland using remote sensing technology</td>
<td></td>
</tr>
<tr>
<td>P6.13</td>
<td>Keil</td>
<td>Orography as a source of predictability of deep convection</td>
<td></td>
</tr>
<tr>
<td>P6.14</td>
<td>Ewanlen</td>
<td>Strong Relationship Between Dry-Season Rainfall Over West Africa And Extratropical Disturbance.</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Author</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>P7.1</td>
<td>Dagsson Waldhauserova Pavla</td>
<td>Winter and high-altitude dust size distributions with the balloon-borne Light Optical Aerosol Counter (LOAC)</td>
<td></td>
</tr>
<tr>
<td>P7.2</td>
<td>Trapero Laura</td>
<td>GWOP’17: Gravity Waves, Orographic Precipitation and related processes in The Cerdanya-2017 field experiment</td>
<td></td>
</tr>
<tr>
<td>P7.3</td>
<td>Portele Tanja Christina</td>
<td>How do orographic and non-orographic gravity wave events during DEEPWAVE compare in measurements and ECMWF model data?</td>
<td></td>
</tr>
<tr>
<td>P7.4</td>
<td>Metz Johnathan</td>
<td>Mountain wave momentum fluxes in evolving large scale flows and complex terrain: perspectives from DEEPWAVE</td>
<td></td>
</tr>
<tr>
<td>P7.5</td>
<td>Stiperski Ivana</td>
<td>Turbulence characteristics and scaling of katabatic flows on a shallow slope</td>
<td></td>
</tr>
<tr>
<td>P7.6</td>
<td>Furevik Birgitte</td>
<td>Building 'extreme' bridges in complex terrain – Observing and simulating the atmospheric conditions in Sulafjorden for the E39 project of the Norwegian Public Roads Administration</td>
<td></td>
</tr>
<tr>
<td>P7.7</td>
<td>Pinty Jean-Pierre</td>
<td>Sensitivity of orographic precipitation to aerosols, a HyMeX case study.</td>
<td></td>
</tr>
<tr>
<td>P7.8</td>
<td>Thorsteinsson Sigurdur</td>
<td>Orographic influence of Greenland on two cyclones</td>
<td></td>
</tr>
</tbody>
</table>